• Title/Summary/Keyword: 방재기능

Search Result 254, Processing Time 0.022 seconds

Effect on Maintenance of Vertical Profile of Stream for Triangle-Type Labyrinth Weir (삼각형 래버린스 위어의 수심유지 효과)

  • Lee, Seung-Oh;Kim, Young-Ho;Im, Jang-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.107-115
    • /
    • 2009
  • The labyrinth weir can be applied to increase the overflow rate, maintain constant water depth and improve water quality. This weir can be defined that the plane shape of overflow part is not straight line and is a kind of weir having overflow length increased by changing its plane shape. There are relatively few studies related to effect of maintaining the water depth which has been used to consider for various functions as hydraulic facilities and design conditions of labyrinth weirs. Thus, it is needed to conduct studies related to the maintenance of water depth by the labyrinth weir. This study was to provide fundamental data which may become a facilitator for more accurate and proper design of hydraulic facilities related to the maintenance of water depth. The ranges of constant water depth ($H_t/P=0.08\sim0.27$) were provided for the triangle type labyrinth weir, and the effect of maintaining water depth was analyzed using hydraulic laboratory experiments and 3D-numerical simulations(Flow-3D).

A Study on Construction and Applicability on of Smart Pole Measuring System for Monitoring Steep Slope Sites (급경사지 모니터링을 위한 스마트폴 계측시스템 구축 및 적용성 연구)

  • Lee, Jin-Duk;Chang, Ki-Tae;Bhang, Kon-Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • Smart Pole Measurement System was constructed with not only the core sensors of a GNSS receiver, a TRS sensor and a soil moisture sensor but supplementary installation of power supply and radio communication for monitoring steep slope sites. Also a data processing software for displacement extraction and visualization was developed. Smart Pole Measurement sensor is composed of a GNSS antenna at the top of the pole, a TRS sensor and a gyro sensor vertical below right of the antenna and a soil moisture sensor at the bottom of the pole. The sensor combination extracts not only ground combination in real time but transltion, slide, settlement and soil moisture content. This measuring/monitoring system which cosists of data receiving part, data collection/transfer part and data processing part was built to exercise their functions and then test measuring/monitoring was conducted by introducing artificial displacement and the results were analyzed to evaluate field applicability.

Experimental Study on Effect of Hybrid Quay Wall According to Floating Breakwater (부유식 방파제에 따른 안벽 내 영향에 관한 실험적 연구)

  • Son, Hyok Jun;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.53-53
    • /
    • 2011
  • 최근에 세계화, 무역자유화에 따른 컨테이너 물동량이 증가하고 있다. 그에 발맞추어 초대형 컨테이너선이 등장하게 되고 신개념, 고효율의 항만인프라의 도입이 요구되고 있다. 이런 배경에 따라 최근에 국내외에서 부유식 안벽에 관한 기술 개발 및 연구가 더욱 필요한 상황이다. 부유식 안벽은 이동가능한 부유식 구조로 기존 항만의 확장 또는 신규 항만 건설시 환경문제를 최소화하고 기항, 선박수 및 선박의 크기에 따른 안벽 배열을 최적화 할 수 있어 항만 기능을 고도화함으로써 녹색항만을 구현하는데 많은 기여를 하게 될 것이다. 특히 컨테이너선의 양현하역과 환적이 가능하게 되어 컨테이너 터미널의 화물처리능력을 확대할 수 있을 뿐 아니라 기항선박의 체류시간을 최소화 할 수 있는 장점이 있다. 또한, 우리나라는 삼면이 바다로 크고 작은 항만들이 해안선을 따라 위치하고 있다. 이러한 항만들을 안전하게 보호하기 위한 방파제는 항만 기본시설인 외곽시설 중의 가장 중요한 구조물이다. 국내에 설치된 방파제는 대부분 사석이나 케이슨을 이용한 중력식 방파제로써 해저에 고정되어 해수면상으로 건설되므로 항내 외 해수교환을 차단하여 항내 수질악화를 초래할 뿐만 아니라 수심에 따라 막대한 건설비용이 소요된다. 따라서 친환경적이고 경제적인 새로운 형식의 방파제에 대한 연구 및 개발이 필요한 실정이다. 그 중 하나의 대안인 부유식 방파제는 공사기간이 짧고 비교적 수심에 대한 제약이 없는 것이 특징이다. 또한 해수의 원활한 흐름이 가능하기 때문에 중력식 방파제에 비해 경제적이며, 환경적 측면에서 큰 장점이 있다. 하지만 아직까지 부유식 방파제에 대한 국내 및 해외에서의 연구는 이론적인 해석을 중심으로 이루어져 부유식 방파제 실용화를 위한 많은 연구가 수행되어야 할 것으로 판단된다. 본 연구에서는 부유식 안벽 내에서 정온도를 효과적으로 유지하기 위하여 부유식 방파제를 설치하고 소파성능과 부유식 안벽내의 영향성을 수리모형실험을 통해 분석하였다.

  • PDF

Subsurface Imaging Technology For Damage Detection of Concrete Structures Using Microwave Antenna Array (안테나배열을 이용한 콘크리트부재 내부의 비파괴시험과 영상화방법 개발)

  • Kim, Yoo-Jin;Choi, Ko-Il;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.1-8
    • /
    • 2005
  • Microwave tomographic imaging technology using a bi-focusing operator has been developed in order to detect the internal voids/objects inside concrete structures. The imaging system consists of several cylindrical or planar array antennas for transmitting and receiving signals, and a numerical focusing operator is applied to the external signals both in transmitting and in receiving fields. In this study, the authors developed 3-dimensional (3D) electromagnetic (EM) imaging technology to detect such damage and to identify exact location of steel rebars or dowel. The authors have developed sub-surface two-dimensional (2D) imaging technique using tomographic antenna array in previous works. In this study, extending the earlier analytical and experimental works on 2D image reconstruction, a 3D microwave imaging system using tomographic antenna way was developed, and multi-frequency technique was applied to improve quality of the reconstructed image and to reduce background noises. Numerical simulation demonstrated that a sub-surface image can be successfully reconstructed by using the proposed tomographic imaging technology. For the experimental verification, a prototype antenna array was fabricated and tested on a concrete specimen.

Estimation of Small Hydropower Resources and Development of Geographic Information System (소수력 자원량 산정과 지리정보시스템 구축)

  • Heo, June-Ho;Park, Wan-Soon;Yun, Jung-Hwan;Jeong, Sang-Man
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • Small hydropower is one of the many types of new and renewable energy, which South Korea is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower geographic information system. This study has given greater precision to calculating annual electricity generation and installed capacity of small hydropower plants of 840 standard basins by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower geographic information system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc., all of which were not provided by the domestic hydropower Resources Map System. Established GIS small hydropower energy system can be used to basic information for active uses of small hydropower energy which is scattered to the entire country.

An Experimental Study on Runoff Reducing Effect of Infiltration-Storage System due to Rainfall Intensity (강우강도에 따른 침투-저류시스템의 우수유출저감효과에 관한 실험 연구)

  • Song, Jai-Woo;Im, Jang-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.85-95
    • /
    • 2007
  • The variation of hydraulic and hydrologic aspect of urban area according to the strongly seasonal variation of rainfall and the increment of urbanization has caused the runoff variation and increased the flood damage, and thus made a difficulty to manage water resources in urban area. Recently, as a part of efforts to resolve these problems, the facilities for reducing runoff increasing due to urbanization have a tendency to install in our country. In this study, more effective Infiltration-Storage System(ISS) is proposed and its reducing effect is analyzed by hydraulic experimental study. The infiltration characteristics of runoff reduction facilities are examined as varying artificial rainfall and a material of infiltration layers being able to consider the influence of urban development. As a result of comparison of infiltration rate of the upper and lower parts, the infiltration rate in the lower part is larger than that of the upper part. Thus, the ISS is more available than existing runoff reduction facilities. Results obtained in this study can be provided fundamental data for improvement of existing runoff reduction facilities and practical use of ISS.

A Study on the Cooling Center Manual of Facility and Maintenance for Extreme Heat Disaster (폭염재난에 대응하는 Cooling Center 시설 및 운영기준에 관한 연구)

  • Kim, Jin-Wook
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.17-22
    • /
    • 2008
  • Including heat wave, Climate change caused 150,000 casualty in 2000 and heat waves are meteorological events that pose a serious threat to human health. A heat wave is defined as "a period of abnormally and uncomfortably hot and usually humid weather". There is a need for the prevention of health effects due to weather and climate extremes. This study intends to propose the necessity of Response System to correspond to extreme heat. And this research focused on Cooling Center manual of facility and maintenance for extreme heat disaster. It would be useful to be planned based on community and to be taken a role as an E.O.C.(Emergency Operating Center). As a conclusion elderly watching system and the requirements regional cooling center facility was proposed.

Performance Comparison between Neural Network Model and Statistical Model for Prediction of Damage Cost from Storm and Flood (신경망 모델과 확률 모델의 풍수해 예측성능 비교)

  • Choi, Seon-Hwa
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.271-278
    • /
    • 2011
  • Storm and flood such as torrential rains and major typhoons has often caused damages on a large scale in Korea and damages from storm and flood have been increasing by climate change and warming. Therefore, it is an essential work to maneuver preemptively against risks and damages from storm and flood by predicting the possibility and scale of the disaster. Generally the research on numerical model based on statistical methods, the KDF model of TCDIS developed by NIDP, for analyzing and predicting disaster risks and damages has been mainstreamed. In this paper, we introduced the model for prediction of damage cost from storm and flood by the neural network algorithm which outstandingly implements the pattern recognition. Also, we compared the performance of the neural network model with that of KDF model of TCDIS. We come to the conclusion that the robustness and accuracy of prediction of damage cost on TCDIS will increase by adapting the neural network model rather than the KDF model.

A Study on the Systematization of the Pedestrian Space for the Prevention of Accidents in Urban Areas - The side of Planning and Management - (도시지역 사고예방을 위한 보행공간 체계화에 관한 연구 - 계획과 운영측면에서 -)

  • Hwang, Eui Jin;Ryu, Ji Hyeob;Lim, Ik Hyeon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Walking is one of human functions and has been the base of the development of human civilization. Walking ability had made the first village and urban pattern of the mankind. Cities had been constructed for pedestrian's convenience and happy life. But conventional cities have been crowded by the rapid increasing vehicles and population since material civilization had developed. On the other hand, pedestrian space has been neglected urban districts. Chose this study to suggest a direction for improvement by following the direction of the city characteristics and roadside pedestrian space. 1. Investigate the relationship and the significance and problems of pedestrian space by finding survey of the literature and discussion with those that affect the behavior of the pedestrian environment around. 2. For a comfortable pedestrian space on the improvement of the pedestrian area of space (physical and psychological) and gait characteristics, service levels and basic data. 3. Chose how to extract the most appropriate of the best alternatives presented several proposals based on the above survey of the literature data and field survey.

Damage Prediction of Infomation and Communication Facilities for Prolonged Power Outage (장기간 정전사태에 대비한 기반시설-정보통신시설-에서의 피해예측)

  • Song, Chang Young;Cho, In Uh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.5 no.2
    • /
    • pp.81-87
    • /
    • 2012
  • Critical infrastructures (energy, information technology and communications, banking, transportation, public government services, etc.) are now more vital to modern society. Citizens, businesses and governments all rely on an array of interlinked physical and information infrastructures to satisfy their needs and perform their daily operations. At the same time, these infrastructures are becoming increasingly interdependent, such that failure of one of them can often propagate and result in domino effects. Recent dramatic episodes, from 9/11 to the Madrid train bombings, the April 2010 ash cloud the power cuts in Korea in 2011, and the cyber-attacks have highlighted the need for a comprehensive, internationally coordinated policy for the protection of critical infrastructures. For the purposes of this report, we define critical infrastructure as infrastructure whose failure would result in substantial damage to society and/or the economy.