• Title/Summary/Keyword: 방위추적식

Search Result 14, Processing Time 0.016 seconds

Development of 2-Axis Solar Tracker with BLDC Motor-Cylinder Actuator and Hall Sensor Feedback (BLDC 모터-실린더 구동, 홀센서 피드백 방식의 2축 태양광 추적장치 개발)

  • Lho, Tae-Jung;Lee, Seung-Hyeon;Park, Min-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2334-2340
    • /
    • 2010
  • Sun position computed by Michalsky shows maximum $1.5^{\circ}$, $0.88^{\circ}$ and 2 minutes differences in azimuth, altitude, and sunrise and sunset times respectively compared with Korean Almanac. The 2-axis solar tracking system, which consist control panel with ATmega128 CPU, BLDC motor-cylinder actuator and 2-axis link mechanism, was developed. Computed azimuth and altitude of sun for a current time, and latitude and longitude of tracker position built are controlled in real time by BLDC motor-cylinder actuators comparing with the position feed-backed by Hall sensor. The use of BLDC motor is free in maintenance. Implementation of a home-return function by Hall sensor is to minimize the cumulative error.

Tracking Control of 3-Wheels Omni-Directional Mobile Robot Using Fuzzy Azimuth Estimator (퍼지 방위각 추정기를 이용한 세 개의 전 방향 바퀴 구조의 이동로봇시스템의 개발)

  • Kim, Sang-Dae;Kim, Seung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3873-3879
    • /
    • 2010
  • Home service robot are not working in the fixed task such as industrial robot, because they are together with human in the same indoor space, but have to do in much more flexible and various environments. Most of them are developed on the base of the wheel-base mobile robot in the same method as a vehicle robot for factory automation. In these days, for holonomic system characteristics, omni-directional wheels are used in the mobile robot. A holonomicrobot, using omni-directional wheels, is capable of driving in any direction. But trajectory control for omni-directional mobile robot is not easy. Especially, azimuth control which sensor uncertainty problem is included is much more difficult. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A trajectory controller for an omni-directional mobile robot, which each motor is controlled by an individual PID law to follow the speed command from inverse kinematics, needs a precise sensing data of its azimuth and exact estimation of reference azimuth value. It has imprecision and uncertainty inherent to perception sensors for azimuth. In this paper, they are solved by using fuzzy logic inference which can be used straightforward to perform the control of the mobile robot by means of the fuzzy behavior-based scheme already existent in literature. Finally, the good performance of the developed mobile robot is confirmed through live tests of path control task.

Tutorial on the Principle of Borehole Deviation Survey - An Application of the Coordinate Transforms (시추공 공곡 측정의 원리 - 좌표계 변환의 응용)

  • Song, Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2020
  • To share an understanding of trajectory measurement in surveys using borehole, this tutorial summarizes the relevant mathematical principles of the borehole deviation survey based on coordinate transform. For uncased or open holes, calculations of the azimuth-deviation-tool face rotation using three-component accelerometer and magnetometer measurements are summarized. For the steel-cased holes, calculations are based on the time-derivative formula of the coordinate transform matrix; yaw-pitch-roll angles through time are mathematically determined by integrating the threecomponent angular velocity measurements from the gyroscope while also removing the Earth's rotation effect. Sensor and data fusion to increase the accuracy of borehole deviation survey is explained with an example of the method. These principles of borehole deviation surveys can be adapted for attitude estimation in air-borne surveys or for positioning in tunnels where global positioning system (GPS) signals cannot be accessed. Information on the optimization filter that must be incorporated in sensor fusion is introduced to help future research.

Design and Analysis of Korean Lunar Orbiter Mission using Direct Transfer Trajectory (직접 전이궤적을 이용한 한국형 달 궤도선 임무설계 및 분석)

  • Choi, Su-Jin;Song, Young-Joo;Bae, Jonghee;Kim, Eunhyeuk;Ju, Gwanghyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.950-958
    • /
    • 2013
  • The Lunar orbiter is expected to be inserted into a ~300km low Earth orbit using Korea Space Launch Vehicle-II(KSLV-II). After the states are successfully determined with obtained tracking data, the Trans Lunar Injection(TLI) burn has to be done at appropriate epoch to send the lunar orbiter to the Moon. In this study, we describe in detail the mission scenario of the Korean lunar orbiter from the launch at NARO Space Center to lunar orbit insertion(LOI) stage following direct transfer trajectory. We investigate the launch window including launch azimuth, delta-V profile according to TLI and LOI burn positions. We also depict the visibility conditions of ground stations and solar eclipse duration to understand the characteristics of the direct transfer trajectory. This paper can be also helpful not only for overall understanding of ${\Delta}V$ trend by changing TOF and coasting time but for selecting launch epoch and control parameters to decrease fuel consumption.