• Title/Summary/Keyword: 방위각 해상도

Search Result 51, Processing Time 0.02 seconds

Implementation of Motion Analysis System based on Inertial Measurement Units for Rehabilitation Purposes (재활훈련을 위한 관성센서 기반 동작 분석 시스템 구현)

  • Kang, S.I.;Cho, J.S.;Lim, D.H.;Lee, J.S.;Kim, I.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.47-54
    • /
    • 2013
  • In this paper, we present an inertial sensor-based motion capturing system to measure and analyze whole body movements. This system implements a wireless AHRS(attitude heading reference system) we developed using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. We performed 3D motion capture using the quaternion data calculated. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE of 2.56 degree. The results suggest that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limbs or gait analysis during the post-stroke recovery process.

  • PDF

Feasibility Study of Forward-Looking Imaging Radar Applicable to an Unmanned Ground Vehicle (무인 차량 탑재형 전방 관측 영상 레이다 가능성 연구)

  • Sun, Sun-Gu;Cho, Byung-Lae;Park, Gyu-Churl;Nam, Sang-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1285-1294
    • /
    • 2010
  • This study describes the design and verification of short range UWB(Ultra Wideband) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. We describe the relationship between bandwidth of transmitting signal and range resolution. A vivaldi antenna is designed and it's radiation pattern and reflection are measured. It is easy to make array antenna because of small size and thin shape. Aperture size of receiving array antenna is determined by azimuth resolution of radar image. The relation of interval of receiving antenna array, image resolution and aliasing of target on a radar image is analyzed. A vector network analyzer is used to obtain the reflected signal and corner reflectors as targets are positioned at grass field. Applicability of the proposed radar to UGV is proved by analysis of image resolution and penetrating capability for grass in the experiment.

High Resolution Wideband Local Polynomial Approximation Beamforming for Moving Sources (이동하는 음원에 적합한 고분해능 광대역 LPA 빔형성기법)

  • Park Do-Hyun;Park Gyu-Tae;Lee Jung-Hoon;Lee Su-Hvoung;Lee Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents a wideband LPA (local polynomial approximation) beamforming algorithm that is appropriate for wideband moving sources. The Proposed wideband LPA algorithm adopts STMV (steered minimum variance) method that utilizes a steered covariance matrix obtained from multiple frequency components in one data snapshot, instead of multiple data snapshots in one frequency bin. The wideband LPA cost function is formed using STMV weight vector. The Proposed algorithm searches for the instantaneous DOA and angular velocity that maximize the wideband LPA cost function. resulting in a higher resolution performance than that of a DS LPA beamforming algorithm. Several simulations using artificial data and sea trial data are used to demonstrate the performance of the Proposed algorithm.

Implementation of Gait Analysis System Based on Inertial Sensors (관성센서 기반 보행 분석 시스템 구현)

  • Cho, J.S.;Kang, S.I.;Lee, K.H.;Jang, S.H.;Kim, I.Y.;Lee, J.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In this paper, we present an inertial sensor-based gait analysis system to measure and analyze lower-limb movements. We developed an integral AHRS(Attitude Heading Reference System) using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE(Root Mean Square Error) of 1.08 and 1.72 degree in yaw and pitch angle. In order to evaluate the performance of our the gait analysis system, we compared the joint angle for the hip, knee and ankle with those provided by Vicon system. The result shows that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limb or gait analysis during the post-stroke recovery.

  • PDF

Steering Angle Error Compensation Algorithm Appropriate for Rapidly Moving Sources (빠른 속도로 기동하는 표적 환경에 적합한 조향각 오차 보정기법)

  • 박규태;박도현;이정훈;이균경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.206-213
    • /
    • 2004
  • This paper presents a steering angle error compensation (SAEC) algorithm that is appropriate for rapidly moving sources. The Proposed algorithm utilizes a modal covariance matrix from multiple frequency components instead of the multiple snapshots in a narrowband SAEC, and estimates the steering error by maximizing the wideband WVDR output power using a first-order Taylor series approximation of the modal steering vector in terms of the steering error. As such, the steering error can be compensated with short observation times. Several simulations using artificial and sea trial data are used to demonstrate the Performance of the proposed algorithm.

Target Detection Technique in a DBS(Doppler Beam Sharpening) Image (DBS(Doppler Beam Sharpening) 영상에서 표적 탐지 방안)

  • Kong, Young-Joo;Kwon, Jun-Beom;Kim, Hong-Rak;Woo, Seon-Keol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.373-381
    • /
    • 2017
  • DBS(Doppler Beam Sharpening) algorithm is a way to improve azimuth resolution performance in radar. Since DBS image includes the is information about the search area of radar, various clutter components exist besides the target to be detected. To detect and track the desired target in a DBS image, it must be able to identify a target and the clutter components. In this paper, we describe how to use image size and terrain information(DTED) to identify the target in a DBS image. By using morphological filter and chain code, it acquires image size and excludes the clutter components. By matching with DTED, we determine target.

Near-Real-Time Ship Tracking using GPS Precise Point Positioning (GPS 정밀단독측위 기법을 이용한 준실시간 선박 위치추적)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.783-790
    • /
    • 2010
  • For safety navigation of ships at sea, ships monitor their location obtained from Global Positioning Satellite System (GNSS). In this study, we computed near-real-time positions of a ship at sea using GPS Precise Point Positioning (PPP) technique and analyzed precision of the near-real-time positions. We conducted ship borne GPS observations in the south sea of Korea. To process the GPS data using PPP technique, GIPSY-OASIS (GPS Inferred Positioning System-Orbit Analysis and Simulation Software) developed by the Jet Propulsion Laboratory was used. Antenna phase center variations, ocean tidal loading displacements, and azimuthal gradients of the atmosphere were corrected or estimated as standard procedures of high-precision GIPSY-OASIS data processing. As a result, the precisions of near-real-time positions was ~1cm.

Design and Implementation of FMCW Radar Based on two-chip for Autonomous Driving Sensor (자율주행센서로서 개발한 2-chip 기반의 FMCW MIMO 레이다 설계 및 구현)

  • Choi, Junhyeok;Park, Shinmyong;Lee, Changhyun;Baek, Seungyeol;Lee, Milim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.43-49
    • /
    • 2022
  • FMCW(Frequency Modulated Continuous Wave) Radar is very useful for vehicle collision warning system and autonomous driving sensor. In this paper, the design and implementation of FMCW radar based on two chip MMIC developed as an autonomous driving sensor was described. Especially, generation of frame-based and chirp-based waveform generation and signal processing are mixed to have the strength of maximum detection speed and compensation of speed. This implemented system was analyzed for performance and commercialization potential through lab. test and driving test in K-city.

Design of an Initial-position Update Mooring Alignment Algorithm for Dual-axis Rotational INS Using a Kalman Filter (칼만 필터를 이용한 2축 회전형 관성항법장치의 초기위치 보정 정박 중 정렬 알고리즘 설계)

  • Kyung-don Ryu
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.379-385
    • /
    • 2024
  • INS(inertial navigation system) aligns itself using gravity and Earth's rotational rate from accelerometers and gyro sensors when stationary. Typically, ZUPT(zero velocity update), which is based on a linear error model Kalman filter, is used when it is stationary. However, such algorithms assume stationary conditions, leading to increased alignment errors or filter divergence during maritime mooring due to wave-induced motion. This paper designs a mooring alignment algorithm for maritime platforms using a Kalman filter, which uses large heading angle error model and an initial position correction technique. And it is validated by simulation. Furthermore, it is confirmed that applying this to a rotational INS dramatically improves performance through the principle of bias cancellation.

Shape design of conformal array using the beam pattern synthesis (빔 패턴 성능 분석을 이용한 곡면 배열 형상 설계)

  • Lee, Keunhwa;Shin, Donghoon;Lim, Jun-Seok;Hong, Wooyoung;Ha, Younghoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.347-358
    • /
    • 2021
  • The objective of this study is to optimize the shape of doubly curved surface where a conformal array is equipped. That surface is modeled with a double-ellipsoid solid controlled by four parameters. By analyzing the performance of the conformal array beams with the beam pattern synthesis, two design parameters are determined. Then, we define the weighted object function which is formulated as the sum of sharp indexes for directivity index, the elevation resolution, and the bearing resolution. The direct calculation on all grids is used to evaluate the weighted object function and seek the optimal value of two design parameters when the weightings are given. In the simulation, four kinds of weighting cases are respectively applied to evaluate the weighted object function. The optimal shapes of double-ellipsoid solid are shown in each case. Especially, when the uniform weightings are used, the double-ellipsoid solid with more smooth surface is obtained.