• Title/Summary/Keyword: 방열 해석

Search Result 205, Processing Time 0.023 seconds

Experimental and Numerical Studies on the Failure of Curtain Wall Double Glazed for Radiation Effect (커튼월 이중 유리 외장재 파단에 대한 실험 및 수치해석 연구)

  • Nam, Jiwoo;Ryou, Hong-Sun;Kim, Dong-Joon;Kim, Sung-Won;Nam, Jun-Seok;Cho, Seongwook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.40-44
    • /
    • 2015
  • National and international standards for curtain wall glass are focused on wind pressure and insulation performance, but disasters such as fires and earthquakes are not considered. Failure of curtain wall glass during a fire in a skyscraper increases the loss of lives and property due to the spread of fire. Therefore, the fire resistance of curtain wall glass should be investigated, and technology to prevent glass failure should be developed to prevent fire damage due to spreading fire. It is important to predict the starting point of cracks and the cause of glass failure to prevent it effectively using the limited water in a skyscraper. In this study, double glazed glass was exposed to a radiator in an experiment performed to analyze the thermal characteristics. The results show that glass that was not directly exposed to high temperature and pressure was broken. To identify this failure case, numerical analysis was performed. Three glass specimens were installed in an ISO 9705 room and exposed to radiation using a radiator, and a thermocouple was used to measure the temperature on the surface of the glass. Widely used double glazed glass was analyzed for weakness to fire.

Development and Validation of Inner Environment Prediction Model for Glass Greenhouse using CFD (CFD를 이용한 유리온실 내부 환경 예측 모델 개발 및 검증)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Min Jun;Kim, Seok Jun;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • Because the inner environment of greenhouse has a direct impact on crop production, many studies have been performed to develop technologies for controlling the environment in the greenhouse. However, it is difficult to apply the technology developed to all greenhouses because those studies were conducted through empirical experiments in specific greenhouses. It takes a lot of time and cost to develop the models that can be applicable to all greenhouse in real situation. Therefore studies are underway to solve this problem using computer-based simulation techniques. In this study, a model was developed to predict the inner environment of glass greenhouse using CFD simulation method. The developed model was validated using primary and secondary heating experiment and daytime greenhouse inner temperature data. As a result of comparing the measured and predicted value, the mean temperature and uniformity were 2.62℃ and 2.92%p higher in the predicted value, respectively. R2 was 0.9628, confirming that the measured and the predicted values showed similar tendency. In the future, the model needs to improve by applying the shape of the greenhouse and the position of the inner heat exchanger for efficient thermal energy management of the greenhouse.

Design of Optical System for LED Lamp using MR16 (MR16용 LED 램프 조명설계)

  • Kim, Jun-Hyun;Moon, Byung-Kwon;Ryu, In-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4725-4732
    • /
    • 2012
  • This paper studies MR16 that can strengthen the strength and make up for the weakness of MR16 by replacing halogen light source using multifaceted Reflector(MR16) with LED light source. To achieve this, developed MR16 for LED applying optical system that four aspheric lens is one sheet. Optical system is designed by optics software and lighting performance of the designed data is predicted lighting simulation program. Also, heatsink's heat radiation analysis program to predict the thermal performance. Finally, optical prototype system based on simulation analysis data is manufactured and the results comparing performance of the developed system and the designed data are follows: Radiation angle was around $50^{\circ}{\sim}60^{\circ}$ in results of simulation analysis and the test of the prototype system. Also, temperature measurement result indicates that the thermal equilibrium is realized after one minute and thirty seconds and heat is generated up $60^{\circ}C$ in all of simulation analysis and the test of the prototype system. Finally, simulation analysis result on light disturbance curve of MR16 is similar to that of performance of the prototype system.

Modelling and Preliminary Prediction of Thermal Balance Test for COMS (통신해양기상위성의 열평형 시험 모델 및 예비 예측)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Han, Cho-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.3
    • /
    • pp.403-416
    • /
    • 2009
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and developed by KARl for communication, ocean and meteorological observations. It will be tested under vacuum and very low temperature conditions in order to verify thermal design of COMS. The test will be performed by using KARI large thermal vacuum chamber, which was developed by KARI, and the COMS will be the first flight satellite tested in this chamber. The purposes of thermal balance test are to correlate analytical model used for design evaluation and predicting temperatures, and to verify and adjust thermal control concept. KARI has plan to use heating plates to simulate space hot condition especially for radiator panels of satellite such as north and south panels. They will be controlled from 90 K to 273 K by circulating GN2 and LN2 alternatively according to the test phases, while the main shroud of the vacuum chamber will be under constant temperature, 90 K, during all thermal balance test. This paper presents thermal modelling including test chamber, heating plates and the satellite without solar array wing and Ka-band reflectors and discusses temperature prediction during thermal balance test.

Environmental Prediction in Greenhouse According to Modified Greenhouse Structure and Heat Exchanger Location for Efficient Thermal Energy Management (효율적인 열에너지 관리를 위한 온실 형상 및 열 교환 장치 위치 개선에 따른 온실 내부 환경 예측)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Seok Jun;Kim, Dae Hyun;Oh, Jae-Heun
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.278-286
    • /
    • 2021
  • In this study, based on the Computational Fluid Dynamics (CFD) simulation model developed through previous study, inner environmenct of the modified glass greenhouse was predicted. Also, suggested the optimal shape of the greenhouse and location of the heat exchangers for heat energy management of the greenhouse using the developed model. For efficient heating energy management, the glass greenhouse was modified by changing the cross-section design and the location of the heat exchanger. The optimal cross-section design was selected based on the cross-section design standard of Republic of Korea's glass greenhouse, and the Fan Coil Unit(FCU) and the radiating pipe were re-positioned based on "Standard of greenhouse environment design" to enhance energy saving efficiency. The simulation analysis was performed to predict the inner temperature distribution and heat transfer with the modified greenhouse structure using the developed inner environment prediction model. As a result of simulation, the mean temperature and uniformity of the modified greenhouse were 0.65℃, 0.75%p higher than those of the control greenhouse, respectively. Also, the maximum deviation decreased by an average of 0.25℃. And the mean age of air was 18 sec. lower than that of the control greenhouse. It was confirmed that efficient heating energy management was possible in the modified greenhouse, when considered the temperature uniformity and the ventilation performance.