• Title/Summary/Keyword: 방열판 형상 변화

Search Result 4, Processing Time 0.018 seconds

NUMERICAL STUDY ON THE EFFECT OF THE SHAPE OF THE HEAT TRANSFER PLATE ON THE THERMAL PERFORMANCE OF THE RADIATOR (변압기용 방열기의 방열판 형상이 방열특성에 미치는 영향에 관한 수치적 연구)

  • Kim, Y.J.;Doo, J.H.;Ha, M.Y.;Son, S.W.;Kim, J.K.;Lee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.65-76
    • /
    • 2015
  • In this study, the natural convection phenomenon of the air side and the forced convection phenomenon of the oil side were simulated in the radiator through a 3-D numerical analysis, and the total heat released by the oil side into the radiator heating plate and then to the air side was evaluated. Also, a quantitative analysis was carried out on the effect of each thermal resistance on the overall heat transfer coefficient through a 1-D thermal circuit analysis on the heat transfer mechanisms of the radiators considered in this study. In addition, for the diverse shapes of the heating plates considered in this study, the pressure drops of the oil side were quantitatively compared and evaluated. The temperatures at the air side and the oil side outlets of the radiators with 8 different fin shapes considered in this study had almost similar values showing a difference of +/-3% and, accordingly, the total heat transfer also showed similar heat dissipation performance in all the models. As a result of the 1-D thermal circuit analysis, in all the models considered in this study, while the thermal resistance of the air side accounted for 92% to 96% of the total, that of the oil side was 5 to 7%, and that of the heating plate showed a very small value of 0.02%.

저궤도 위성 열진공 시험의 전자 시험 설계

  • Gwon, Dong-Yeong;Jeon, Mun-Jin;Lee, Na-Yeong;Kim, Dae-Yeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.170.2-170.2
    • /
    • 2012
  • 위성의 열진공 환경 시험은 고진공 극저온의 우주 환경을 모사하여 열제어 기능 및 임무 수행 능력을 검증하는 시험이다. 이 시험에서는 위성 주위에 부착한 방열판으로 위성 외각 온도를 변화 시켜 위성의 태양 지향 자세 또는 심우주 지향 자세를 모사하며, 이에 따른 위성의 온도 변화에 따라 지상 시험 장비로 위성의 히터 설정, 유닛 전원 형상의 변경 등을 해야한다. 또한 극고온 또는 극저온의 환경에 장시간 연속적으로 노출된 상태에서 위성의 기본적인 기능부터 영상 미션까지 검토하는 CPT 시험을 수행하며, 이 CPT 시험은 극한의 위성 상태의 시험이기 때문에 온도를 고려한 전자 시험 설계 및 24시간 위성 모니터링 시스템, 위험상황 발생 시 대처 방안 등에 대한 준비가 필요하다. 본 논문에서는 열진공 시험 시의 전자시험의 형상과 설계에 대해서 설명하고, 시험 결과에 대해서 정리하였다.

  • PDF

Study on the Satellite Thermal Control Hardware Composed of Two Parallel Channels Working for Heat Pipe and Phase Change Material (열관과 상변화물질을 일체형으로 병렬 배열한 위성용 열제어 부품 연구)

  • Kim, Taig-Young;Hyun, Bum-Seok;Lee, Jang-Joon;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1087-1093
    • /
    • 2010
  • The satellite thermal control H/W composed of two parallel channels working for heat pipe (HP) and phase change material (PCM) is suggested for the high heat dissipating component which works intermittently with short duty. In a limited point of view, the HP-PCM device is a kind of off-the-shelf component that requires no dedicated configuration and thermal designs to PCM. Therefore, it can be used with less impact on the program cost and schedule different from most of the PCM applications. In present study the typical honeycomb structure radiator applying the HP-PCM device is designed and the detail thermal math model is developed for numerical analyses. The result comparison between without and with PCM shows that the HP-PCM device redistributes the peak heat around the whole mission period through the alternate melting and freezing of PCM, and, as a result, the maximum and minimum temperatures are effectively alleviated. The drawback of PCM application due to low thermal conductivity can be successfully resolved by means of parallel arrangement of HP channel.

A Study on the Numerical Analysis of Heat Sink for Radiant Heat of Automotive LED Head Lamp (자동차 LED Head Lamp의 방열을 위한 Heat Sink의 수치해석적 연구)

  • Choi, Byung-Hui;Kim, Chang-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4398-4404
    • /
    • 2012
  • This thesis was conducted a numerical analysis on the radiant heat performance according to factors of design of heat sink for cooling of the automotive LED head lamp. The heat sinks were designed with 5 different types to fit the limited internal space by formula based on an existing product (Type 1). Designed heat sinks of five types were analyzed by ANSYS CFD V12.1, and the analysis results were compared with the existing type. The results of simulation were analyzed temperature distribution and average temperature, air flow characteristic, heat flux etc. This thesis was researched on the correlation of the cooling performance according to the heat sink structure and the fin shape. Through numerical analysis, could be confirmed heat sink Type 2 as the best results.