Proceedings of the Korean Operations and Management Science Society Conference
/
2006.05a
/
pp.1715-1721
/
2006
기존의 탄도미사일 방어무기의 배치와 관련된 대부분의 연구들은 배치규모가 결정된 상태에서 후보지 중 최적위치를 구하는 것이 일반적이며, 방어확률이 최대가 되는 것을 목적으로 하는 확률적 부분담당모델의 개념을 적용한다. 본 연구에서는 무기의 도입 및 배치를 담당하는 의사결정자들에게 보다 많은 상황과 변수를 가정할 수 있도록 하는 의사결정모델을 제안한다. 모델에는 기존에 고려하지 않았던 후보지의 수준 및 방호시설의 최소방어요구수준 등이 포함되어 있으며, 모델은 의사결정자들이 결정하는 결정변수에 따라 각기 다른 방어무기의 위치와 규모 및 방어확률을 제시 하게 된다. 모델의 결과로 제시되는 내용은 무기체계의 최초소요제기 단계에서 필요규모와 위치를 결정하고 또한, 그 결과 값이 최초계획단계의 대략적 무기배치규모와 상이할 경우는 그 값이 필요성과 타당성을 가질 수 있는 수치적 분석을 제공해 준다.
Journal of Information Technology and Architecture
/
v.11
no.2
/
pp.157-173
/
2014
As Air Base Defence, Anti-Aircraft Defence and Nuclear-Biological-Chemical Protection model considered as ground operation models in Republic of Korea Air Force are designed as the voice-centered system between participant nodes, there is a problem communicating accurately. In recent years, the military is developing a command and control capability using data communication technology to solve the problem. Therefore, this paper proposes new model to maximize efficiency of performance improvement through the Data Communication-based Future Air Base Defence Model. We refer to a research paper that is related existing and developed new model. and then we really experimented under WiBro Network that is constructed to Air Base for maintenance control. Based on the analysis and the test result of new Air Base Defence Model, we have concluded that the performance improvement effect is reached.
ViT(Vision Transformer)는 트랜스포머 구조에 이미지를 패치들로 나눠 한꺼번에 인풋으로 입력하는 모델이다. CNN 기반 모델보다 더 적은 훈련 계산량으로 다양한 이미지 인식 작업에서 SOTA(State-of-the-art) 성능을 보이면서 다양한 비전 작업에 ViT 를 적용하는 연구가 활발히 진행되고 있다. 하지만, ViT 모델도 AI 모델 훈련시에 생성된 그래디언트(Gradients)를 이용해 원래 사용된 훈련 데이터를 복원할 수 있는 모델 역전 공격(Model Inversion Attacks)에 안전하지 않음이 증명되고 있다. CNN 기반의 모델 역전 공격 및 방어 기법들은 많이 연구되어 왔지만, ViT 에 대한 관련 연구들은 이제 시작 단계이고, CNN 기반의 모델과 다른 특성이 있기에 공격 및 방어 기법도 새롭게 연구될 필요가 있다. 따라서, 본 연구는 ViT 모델에 특화된 모델 역전 공격 및 방어 기법들의 특징을 서술한다.
This study considers an optimal investment planning for improving survivability from an air threat in the layered air defense system. To establish an optimization model, we first represent the layered air defense system as a network model, and then, present two optimization models minimizing the failure probability of counteracting an air threat subject to budget limitation, in which one deals with whether to invest and the other enables continuous investment on the subset of nodes. Nonlinear objective functions are linearized using log function, and we suggest dynamic programming algorithm and linear programing for solving the proposed models. After designing a layered air defense system based on a virtual scenario, we solve the two optimization problems and analyze the corresponding optimal solutions. This provides necessity and an approach for an effective investment planning of the layered air defense system.
We analyzed APT attack cases that occurred overseas in the past using a cyber kill chain model and a TTP model. As a result of the analysis, we found that the cyber kill chain model is effective in figuring out the overall outline, but is not suitable for establishing a specific defense strategy, however, TTP model is suitable to have a practical defense system. Based on these analysis results, it is suggested that defense technology development which is based on TTP model to build defense-in-depth system for preparing cyber attacks.
본 논문에서는 DDoS 공격 패킷을 사전에 탐지하고 트래픽 제어를 하기위한 방안을 제안한다. 제안된 모델은 공격대상에서 멀리 떨어 진 라우터에서 낮은 임계치를 적용하여 탐지 하게 되며 지역 연합 모델을 통한 지역적인 방어 행동을 취하게 된다. 사전에 취해지는 방어 행동으로 인해 본 시스템은 좋은 성능을 발휘 할 것이다. 시스템의 각 지역연합들은 DDoS 공격의 악의 적인 트래픽의 양을 줄이는 것에 기여 할 것이다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.100-102
/
2020
심층 신경망은 적대적인 공격으로 생성된 적대적 예제에 의해 쉽게 오작동할 수 있다. 이에 따라 다양한 방어 방법들이 제안되었으나, 더욱 강력한 적대적인 공격이 제안되어 방어 방법들을 무력화할 가능성은 존재한다. 이러한 가능성은 어떤 공격 범위 내의 적대적인 공격을 방어할 수 있다고 보장할 수 있는 인증된 방어(Certified defense) 방법의 필요성을 강조한다. 이에 본 논문은 인증된 방어 방법 중 가장 효과적인 방법의 하나로 알려진 구간 경계 전파(Interval Bound Propagation)의 성능을 향상하는 방법을 연구한다. 구체적으로, 우리는 기존의 구간 경계 전파 방법의 훈련 과정을 수정하는 방법을 제안하며, 이를 통해 기존 구간 경계 전파 방법의 훈련 시간을 유지하면서 성능을 향상할 수 있음을 보일 것이다. 우리가 제안한 방법으로 수행한 MNIST 데이터 셋에 대한 실험에서 우리는 기존 구간 경계 전파 방법 대비 인증 에러(Verified error)를 Large 모델에 대해서 1.77%, Small 모델에 대해서 0.96% 낮출 수 있었다.
딥 러닝 기술의 급속한 발전과 더불어, 이를 활용한 모델들에 대한 보안 위협도 증가하고 있다. 이들 중, 모델의 입출력 데이터를 이용해 내부 구조를 복제하려는 모델 추출 공격은 딥 러닝 모델 훈련에 높은 비용이 필요하다는 점에서 반드시 막아야 할 중요한 위협 중 하나라고 할 수 있다. 본 연구는 다양한 모델 추출 공격 기법과 이를 방어하기 위한 최신 연구 동향을 종합적으로 조사하고 분석하는 것을 목표로 하며, 또한 이를 통해 현재 존재하는 방어 메커니즘의 효과성을 평가하고, 향후 발전 가능성이 있는 새로운 방어 전략에 대한 통찰력을 제공하고자 한다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.621-623
/
2023
본 논문에서는 기계 학습 모델의 취약점과 대응책에 초점을 맞추어 적대적인 기계 학습 공격 및 방어 분야를 탐구한다. 신중하게 만들어진 입력 데이터를 도입하여 기계 학습 모델을 속이거나 조작하는 것을 목표로 하는 적대적 공격에 대한 심층 분석을 제공한다. 이 논문은 회피 및 독성 공격을 포함한 다양한 유형의 적대적 공격을 조사하고 기계 학습 시스템의 안정성과 보안에 대한 잠재적 영향을 조사한다. 또한 적대적 공격에 대한 기계 학습 모델의 견고성을 향상시키기 위해 다양한 방어 메커니즘과 전략을 제안하고 평가한다. 본 논문은 광범위한 실험과 분석을 통해 적대적 기계 학습에 대한 이해에 기여하고 효과적인 방어 기술에 대한 통찰력을 제공하는 것을 목표로 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.