• Title/Summary/Keyword: 방어기전

Search Result 165, Processing Time 0.03 seconds

Involvement of Kupffer Cell in $CCl_4$ induced Liver Injury: The Role of Calcium (사염화 탄소에 의한 간손상에 있어 Kupffer cell 칼슘의 역할)

  • Yang, Mie-Rha
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.75-82
    • /
    • 1996
  • The hypothesis that calcium provoke $O_2^-$ formation by Kupffer cells and may contribute to carbon tetrachloride $(CCl_4)$ induced liver injury was studied in SD rats. In $CCl_4-treated$ animals, hepatic malonaldehyde (nmole/gm liver) and plasma ALT (IU/ml) levels elevated significantly from $119.63{\pm}13.00$ to $268.97{\pm}14.82$ and from $17.3{\pm}0.18$ to $806.08{\pm}37.63$, respectively, compared to those in controls. Activation of Kupffer cells with high dose of retinol (250,000 IU/kg/day, po, for 7 day) significantly enhanced ALT levels, while inactivation of Kupffer cells with gadolinium chloride (7.5 mg/kg/day, ip, for 2 day) attenuated the increase of serum ALT level following $CCl_4$ treatment. Diltiazem (10 mg/kg/day, ip for 2 day) given in combination with retinol led to a marked decrease in ALT levels compare to the level in rats treated only with retinol against $CCl_4$ treatment. In order to determine any alterations in cytochrome P450 activities, the P450 content and the CYP2E1 activity were measured and all $CCl_4-treated$ rats showed significantly lower levels compared to those in controls and vehicle-treated animals. There were significant increases in glutathione peroxidase in all $CCl_4-treated$ rats except diltiazem treated groups. No difference was found among untreated and vehicle-treated rats. It is concluded that Kupffer cells contribute to $CCl_4-induced$ liver injury and that calcium antagonist attenuated the increased $CCl_4-induced$ liver injury due to activation of Kupffer cells.

  • PDF

Beneficial Effect of Curcumin on Epidermal Permeability Barrier Function in Hairless Rat (무모쥐에서 자외선에 의한 피부 장벽 손상에 미치는 커큐민의 보호 효과)

  • Jeon, Hee-Young;Kim, Jeong-Kee;Kim, Wan-Gi;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.686-690
    • /
    • 2008
  • Recent research has shown that curcumin has beneficial effects in a variety of skin diseases, including scleroderma, psoriasis, and skin cancer. In this study, we assessed the effects of curcumin on epidermal permeability barrier function in vivo and in vitro. In order to evaluate the effects of curcumin on epidermal permeability barrier function in vivo, hairless rats were exposed to UVB irradiation, and curcumin was administered orally at a dosage of 150 mg/kg per day for 8 weeks. Transepidermal water loss (TEWL) and epidermal thickness were measured at the end of the experiment. The expression of filaggrin, a marker of keratinocyte differentiation, and serine palmitoyltransferase (SPT), a marker of the formation of the stratum corneum lipid barrier, in human HaCat keratinocytes were analyzed. The in vivo results showed that an 8 week administration of curcumin markedly prevented the UVB-induced increase in TEWL. The UV-induced increase in epidermal thickness was also reduced significantly by curcumin treatment. The in vitro results demonstrated the concentration-dependent effects of curcumin on the expression of both filaggrin and SPT in HaCat cells, reflecting the notion that curcumin can induce epidermal keratinocyte differentiation and can improve the recovery of skin barrier functions. These results show that curcumin is a promising candidate for the improvement of epidermal permeability barrier function.

Intracellular Signaling Pathway for Host Defense Mechanisms against Piscine Nervous Necrosis Virus (NNV) (어류신경괴사증바이러스(nervous necrosis virus, NNV) 감염에 따른 숙주의 방어기전관련 세포신호전달)

  • Kim, Jong-Oh
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.402-409
    • /
    • 2020
  • Nervous necrosis virus (NNV) contains a bi-segmented viral genome, RNA1 (3.4 kb, RdRp), and RNA2 (1.4 kb, capsid protein) in a small particle (25 nm). Despite its extremely compact size, NNV has caused serious damage by infecting approximately 120 fish species worldwide since it was first reported in the late 1980s. In order to minimize the damage caused by NNV infection and develop effective vaccines, it is necessary to understand the intra cellular signaling system according to NNV infection. NNV infection induces cell cycle arrest at the G1 phase via the p53-dependent pathway to use the cellular system for its replication. Otherwise, host cells recognize NNV infection through the RIG-1-like receptor (RLR) signaling pathway to control the virus and infected cells, and then ISGs required for antiviral action are activated via the IFN signaling pathway. Moreover, apoptosis of infected cells is triggered by the unfolded protein response (UPR) through ER stress and mitochondria-mediated cell death. Cell signaling studies on the NNV infection mechanisms are still at an early stage and many pathways have yet to be identified. Understanding the various disease-specific cellular signaling systems associated with NNV infection is essential for rapid and accurate diagnosis and vaccine development.

Characterization of Antioxident Enzymes in the Lung of Rat Exposed to Cigarette Smoke (흡연한 흰쥐 폐조직 항산화효소들의 특성)

  • 이영구;손형옥;임흥빈;이동욱;박준영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.1
    • /
    • pp.3-14
    • /
    • 1993
  • Oxidants in environment or cigarette smoke are known to be implicated in the oxidative damages of pulmonary system. Such cellular damages are prevented by the presence of adequate levels of antioxidants in the tissue. In the present study, we investigated the influences of smoking duration and concentration of smoke on lung antioxidant defense in rats. Subchronic exposure of rats to smoke generated from 6 cigarettes per day for 90 days caused the activities of catalase and superoxide dismutase (SOD) to increase. However, glutathione peroxidase (GP-Xase) was not significantly changed. Total sulfhydryl compounds (Total-SH) in the lung homogenates from the rats inhaled with cigarette smoke for 15 days was decreased by 44% , thereafter it was returned to the level of normal rats. On the contrary, when rats were daily exposed to a different concentration of smoke generated from 1 to 20 cigarettes per day for 15 days, the activity of catalase was increased gradually with dose, but total SOD activity was increased only in the rats of low dose groups less than 5 cigarettes. Three types of SOD (one Cu, Zn-SOD with pI 4.9, and two Zn-SOD with pI 4.7 and 7.9)were detected in the lung homogenates and Zn-SOD with pI 4.7 was the major and cigarette-smoke inducible form. These results indicate that the protection of lung against oxidants from cigarette smoke seems to be accomplished by the induction of catalase and SOD, especially a cyanide resistant Zn-SOD with pI 4.f, following the consumption of antioxidants such as GSH in the beginning of inhalation period.

  • PDF

Beneficial Effect of a Collagen Peptide Supplement on the Epidermal Skin Barrier (콜라겐 펩타이드의 피부 장벽 보호 효과)

  • Kim, Jeong-Kee;Lee, Ji-Hae;Bae, Il-Hong;Seo, Dae-Bang;Lee, Sang-Jun
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.458-463
    • /
    • 2011
  • Recent studies have revealed that collagen peptide (CP) plays a protective role in skin by improving the activity of antioxidants and acts as an inducer of skin regeneration by positive feedback. In this study, we focused on the beneficial effect of reinforcing the CP skin barrier. To evaluate the skin barrier, hairless mice were exposed to UVB irradiation and acetone-treatment, with or without oral administration of CP. The effects on skin appearance, trans-epidermal water loss, epidermal thickness, and cytokine content were measured using bioengineering and histochemical methods. In the CP treated group, the skin had better appearance and less damage than that of the control. Furthermore, in HaCaT cells, the amount of serinepalmytoyl transferase (SPT) mRNA increased by about 1.6-fold after treatment (CP, 100 mg/L), reflecting that CP can induce SPT expression and reinforce the recovery of skin barrier function. These results suggest that CP is not only an anti-wrinkling agent but also a potent candidate as an epidermal moisturizer.

A PCR Denaturing Gradient Gel Electrophoresis (DGGE) Analysis of Intestinal Microbiota in Gastric Cancer Patients Taking Anticancer Agents (PCR-DGGE를 통해 분석한 항암치료에 따른 장내 미생물 변화)

  • Yu, Sun Nyoung;Ahn, Soon Cheol
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1290-1298
    • /
    • 2017
  • Intestinal microbiota is an important factor in the development of immune defense mechanisms in the human body. Treatments with anticancer agents, such as 5-Fluorouracil, Cisplatin, and Oxaliplatin, significantly change the temporal stability and environment of intestinal bacterial flora. The anticancer treatment chemotherapy often depresses the immune system and induces side effects, such as diarrhea. This study investigated the effects anticancer agents have on the intestinal microbial ecosystems of patients with gastric cancer. An exploration of the diversity and temporal stability of the dominant bacteria was undertaken using a DGGE with the 16S rDNA gene. Researchers collected stool samples from patients zero, two and eight weeks after the patients started chemotherapy. After the treatment with anticancer agents, the bacteria strains Sphingomonas paucimobilis, Lactobacillus gasseri, Parabacteroides distasonis and Enterobacter sp. increased. This study focused on the survival of the beneficial microorganisms Bifidobacterium and Lactobacillus in the intestines of cancer patients. The administration of antigastric cancer agents significantly decreased Lactobacillus and Bifidobacterium populations and only moderately affected the main bacterial groups in the patients' intestinal ecosystems. The results showed the versatility of a cultivation independent-PCR DGGE analysis regarding the visual monitoring of ecological diversity and anticancer agent-induced changes in patients' complex intestinal microbial ecosystems.

The Metabolic Effects of FGF21: From Physiology to Pharmacology (생리, 약학적 관점에서 fibroblast growth factor 21 (FGF21)의 대사 효과 고찰)

  • Song, Parkyong
    • Journal of Life Science
    • /
    • v.30 no.7
    • /
    • pp.640-650
    • /
    • 2020
  • Fibroblast growth factor 21 (FGF21) is an atypical member of the FGF protein family which is highly synthesized in the liver, pancreas, and adipose tissue. Depending on the expression tissue, FGF21 uses endo- or paracrine features to regulate several metabolic pathways including glucose metabolism and energy homeostasis. Different physiologically stressful conditions such as starvation, a ketogenic diet, extreme cold, and mitochondrial dysfunction are known to induce FGF21 synthesis in various tissues to exert either adaptive or defensive mechanisms. More specifically, peroxisome proliferator-activated receptor gamma and peroxisome proliferator-activated receptor alpha control FGF21 expression in adipose tissue and liver, respectively. In addition, the pharmacologic administration of FGF21 has been reported to decrease the body weight and improve the insulin sensitivity and lipoprotein profiles of obese mice and type 2 diabetes patients meaning that FGF21 has attracted huge interest as a therapeutic agent for type 2 diabetes, obesity, and non-alcoholic fatty liver disease. However, understanding FGF21 remains complicated due to the paradoxical condition of its tissue-dependent expression. For example, nutrient deprivation largely increases hepatic FGF21 levels whereas adipose tissue-derived FGF21 is increased under feeding condition. This review discusses the issues of interest that have arisen from existing publications, including the tissue-specific function of FGF21 and its action mechanism. We also summarize the current stage of a clinical trial using several FGF21 analogs.

Gamma-ray-induced skin injury in the mini-pig: Effects of irradiation exposure on cyclooxygenase-2 expression in the skin (감마선조사에 의한 돼지 피부장애에 cyclooxygenase-2의 발현변화)

  • Kim, Joong Sun;Park, Sunhoo;Jang, Won Seok;Lee, Sun Joo;Lee, Seung Sook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.65-72
    • /
    • 2015
  • The basic concepts of radiation-induced skin damage have been established, the biological mechanism has not been studied. In this study, we have examined the effects of gamma rays on skin injury and cyclooxygenase(COX)-2 expression. Gamma irradiation induced clinicopathological changes in a dose- and time-dependent manner in mini-pig skin. The histological changes were consistent with the changes in gross appearance at 12 weeks after irradiation. After three days' irradiation, apoptotic cells in the basal layer were found more frequently in irradiated skin than in normal skin, with the magnitude of the effect being dose-dependent. The thickness of the epidermis transiently increased 3 days after irradiation, and then gradually decreased, although changes in the epithelial thickness of the irradiated field were not observed with irradiation doses over 50 Gy. In the epithelium, there was an initial degenerative phase, during which the rate of basal cell depletion was dependent on the radiation dose (20-70 Gy). One week after irradiation, COX-2 expression was mostly limited to the basal cell layer and was scattered across these cells. High COX-2 expression was detected throughout the full depth of the skin after irradiation. The COX-2 protein is upregulated after irradiation in mini-pig skin. These histological changes associated with radiation exposure dose cause the increased COX-2 expression in a dose-dependent fashion.

Protective Effect of Cosmetics Containing Red Beet against Cigarette Smoke-induced Oxidative Damage in Human Skin (레드비트를 함유하는 화장품의 담배 연기에 의한 피부 지질 산화 방지 효과)

  • Seo, Cho Rong;Ha, Tae Hyun;Moon, Ji Young;Kim, Jeong Mi;Park, Byoung Kwon;Lee, Ji Won;Park, Jin Oh;Shin, Jin Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.2
    • /
    • pp.111-116
    • /
    • 2018
  • In cosmetics market, anti-pollution products recently come up with new solution for skin health. Environmental oxidation mechanisms are realized as bio-marker of atmospheric pollution upon skin by environmental pollutant such as ozone, UV rays, particulate matter (PM) as well as cigarette smoke. The exposure of cigarette smoke directly or indirectly causes the oxidation of the stratum corneum skin lipids, resulting in the conversion of squalene to squalene monohydroperoxide and/or generation of malondialdehyde (MDA) as a product of lipid peroxidation. The aim of this study is to see whether new cosmetics product containing red beet has anti-oxidation effect on skin exposed by cigarette smoke. So as to determine oxidative damage to human skin at biochemical level, each unit area of volar forearms was exposed to cigarette smoke through device (3.3 cm, diameter) for fifteen minutes, then measured MDA using standardized TBARS assay kit. Compared to negative control (untreated and unexposed area), the level of MDA was significantly increased at positive control (untreated and exposed area) more than 3.7 times, indicating the pollutant induced-oxidative damage on the skin barrier. Whereas, the pre-applied area with the cosmetics products containing red beet revealed a decrease of 25% compared with positive control. As reports, these data demonstrated that cigarette smoke induce peroxidation of stratum corneum skin lipids. Conclusively, we suggest that anti-pollution effect of the cosmetics product containing red beet is beneficial to prevent the oxidation of skin lipids by atmospheric pollution.

The TNF Receptor Expressions in Cancer Cells Transfected with TNF-$\alpha$ cDNA Using Retroviral Vector (Retroviral vector를 이용한 종양괴사인자 (TNF-$\alpha$) 유전자 이입 암세포에서 종양괴사인자 수용체의 발현)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Shim, Young-Soo;Han, Sung-Koo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1271-1284
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF-resistance in TNF-$\alpha$ cDNA transfected cancer cells would be an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate whether the levels of TNF receptor mRNA expression and soluble TNF receptor release from cancer cells are changed after TNF-$\alpha$ cDNA transfection. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, EUSA, MTT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and evaluated the TNF receptor mRNA expression with Northern blot analysis and soluble TNF receptor release with EUSA. Results : The TNF receptor mRNA expressions of parental cells and genetically modified cells were not significantly different. The soluble TNF receptor levels of media from genetically modified cells were lower than those from parental cells. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the TNF receptor and the soluble TNF receptor expression.

  • PDF