• Title/Summary/Keyword: 방사 평형

Search Result 115, Processing Time 0.026 seconds

Analysis of Nano-Scale Heat Conduction in the Quantum Dot Superlattice by Ballistic Diffusive Approximation (Ballistic Diffusive Approximation에 의한 Quantum Dot Superlattice의 나노열전달 해석)

  • Kim, Won-Kap;Chung, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1376-1381
    • /
    • 2004
  • Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and optoelectronic devices based on quantum structures. $Chen^{(1)}$ developed ballistic diffusive equation(BDE) for alternatives of the Boltzmann equation that can be applied to the complex geometrical situation. In this study, a simulation code based on BDE is developed and applied to the 1-dimensional transient heat conduction across a thin film and transient 2-dimensional heat conduction across the film with heater. The obtained results are compared to the results of the $Chen^{(1)}$ and Yang and $Chen^{(1)}$. Finally, steady 2-dimensional heat conduction in the quantum dot superlattice are solved to obtain the equivalent thermal conductivity of the lattice and also compared with the experimental data from $Borca-Tasciuc^{(2)}$.

  • PDF

Geochemical Modeling of U Solubility in Groundwater Conditions (지하수에서의 우라늄 용해도에 대한 지화학적 모델링 연구)

  • Cho, Young-Hwan;Han, Kyung-Won;Suh, In-Suk
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.29-35
    • /
    • 1990
  • Uranium solubilities have been calculated for a range of conditions expected in a nuclear waste disposal repository. Variables taken into consideration include the pH and Eh range expected for deep groundeaters, the effect of the composition of groundwater. The model used in these calculations is based on the assumption of chemical equilibrium. Calculations show that the major variables influencing uranium solubility under the repository conditions are pH and Eh. The results of this study can be applied to an assessment of the nuclear waste disposal.

  • PDF

Cracking of Rice Caused by Moisture Migration during Storage (쌀의 저장중 수분이동에 의한 균열현상에 관한 연구)

  • Mok, Chul-Kyoon;Lee, Sang-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.164-170
    • /
    • 1999
  • Cracking of rice caused by moisture migration during storage under different relative humidity conditions was investigated for the establishment of safe storage condition of rice. Rice was cracked when a large difference in equilibrium relative humidity $({\Delta}ERH)$ between the rice and the environment was present. External and internal cracks were generated as the results of moisture desorption and adsorption, respectively. The external cracks by moisture desorption generated in all directions and shaped irregularly, while the internal cracks by moisture adsorption did in radial direction and showed a typical shape. The cracking trend could be analyzed by the Weibull function, and the cracking constant increased with ${\Delta}ERH$. The frequency of cracked rice increased linearly with In $({\Delta}ERH)$. The critical crack-inducing ${\Delta}ERH$ was $11.3{\sim}16.4%$ during desorption and $10.8{\sim}17.1%$ during adsorption. A diagram for the safe storage of rice was developed with respect to the initial moisture content and the water activity of rice.

  • PDF

Adsorption Characteristics of Elemental Iodine and Methyl Iodide on Base and TEDA Impregnated Carbon (활성탄을 이용한 원소요오드 및 유기요오드 흡착특성)

  • Lee, Hoo-Kun;Park, Geun-Il
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.44-55
    • /
    • 1996
  • For the purpose of controlling the release of radioiodine to the environment in nuclear power plants, adsorption characteristics of elemental iodine and methyl iodide on the base carbon and 2%, 5% TEDA impregnated carbons were studied. The amounts of adsorption of elemental iodine and methyl iodide on the carbons were compared with Langmuir, Freundlich, Sips and Dubinin-Astakhov(DA) isotherm equations. Adsorption data were well correlated by the DA equation based on the potential theory. Adsorption energy distributions were obtained from the parameters of the DA equation derived from the condensation approach method. For the adsorption of methyl iodide and elemental iodine-carbon system, the DA equation can be well expressed by the degree of heterogeneity of the micropore system because the surface is nonuniform when its potential energy is unequal. The adsorption energy distribution wes investigated to find a surface heterogeneity on the carbon. The surface heterogeneity for iodine-carbon system is highly affected by the adsorbate-adsorbent interaction as well as the pore structure. The surface heterogeneity increases as a content of TEDA impregnated increases. The adsorption nature of methyl iodide on carbon turned out to be more heterogeneous than that of elemental iodine.

  • PDF

The Study on Design of Semiconductor Detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 반도체 검출기 설계에 관한 연구)

  • Kim, Kyo-Tae;Kim, Joo-Hee;Han, Moo-Jae;Heo, Ye-Ji;Ahn, Ki-Jung;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2017
  • In the non-destructive inspection field, we invest a lot of time and resources in developing the radiation source system to ensure the safety of the workers. However, the probability of accidents is still high. In order to prevent potential radiation accidents in advance, it is necessary to directly verify the position of the radiation source, but the research is still insufficient. In this study, we developed a monitoring system that can detect the position of the radiation source in the source guide tube in the gamma-ray irradiator. The characteristics of the radiation detector are estimated by monte carlo simulation. As a result, the radiation detector for Ir-192 gamma-ray energy was analyzed to have secondary electron equilibrium at $150{\mu}m$ regardless of the semiconductor material. Also, it is expected that the gamma ray response characteristic is the best in $HgI_2$. These results are expected to be used as a basis for determining the optimal thickness of the radiation detector located in the detection part of the future monitoring system. In addition, when developing a monitoring system based on this, radiation workers can easily recognize the danger and secure safety, as well as prevent and preemptively respond to potential radiation accidents.

Residual Liquid Behavior Calculation for Vacuum Distillation of Multi-component Chloride System (다성분 염화물계 진공 증류의 잔류 액체 거동 계산)

  • Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.179-189
    • /
    • 2014
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. An electrolytic reduction of the pyroprocessing is a process to reduce oxides into metals using LiCl as an electrolyte and requires a post-treatment process due to the inclusion of residual salt in porous metal products. A vacuum distillation has been adopted for various molten salt systems and could be applied to the post-treatment process of the electrolytic reduction. The residual salt in the metal products includes LiCl, alkali chlorides, and alkaline earth chlorides. In this paper, vapor pressures of chlorides have been estimated and the composition changes on the residual liquid during the vacuum distillation process have been calculated. A model combining a material balance and vapor-liquid equilibrium relations has been proposed under a constant vapor discharging flow rate and liquid composition changes have been calculated using the vapor pressures with respect to a dimensionless time. The behaviors have been compared with temperature and molten salt composition changes to simulate the process condition variation. The distillation of the residual salt has been dominated by LiCl which is the main component of the salt and CsCl of which vapor pressure is higher than that of LiCl would be readily removed. RbCl exhibits similar vapor pressure with LiCl and maintains its composition. However, $SrCl_2$ and $BaCl_2$ of which vapor pressures are much lower than that of LiCl are concentrated with time and expected to be possibly precipitated during the distillation when the initial compositions are increased.

A Study of the Rn-222 and Ra-226 Analysis in Aqueous Samples with a Low-Level Liquid Scintillation Counter and Pulse-Shape Analysis (저준위 액체섬광계수기와 파형분석법을 이용한 수용액 중 라돈-222 및 라듐-226의 분석법 연구)

  • Shin, Hyun-Sang;Lee, Chang-Woo;Lee, Myung-Ho;Cho, Yung-Hyun;Hong, Kwang-Hee;Choi, Geun-Sik
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.428-435
    • /
    • 1999
  • A method for measuring Rn-222 and Ra-226 in aqueous sample using liquid scintillation counting technique has been studied. The Rn-222 was extracted easily from the water sample (10 mL) by 12 mL of xylene based organic scintillant. After radioactive equilibrium between Rn-222 and its alpha emitting decay products for three hours, the alpha activity from Rn-222 and its decay products were measured in a scintillation vial using the Wallae $1220^{TM}$ Quantulus liquid scintillation counter. Ra-226 concentration in aqueous sample was determined, after isolation of Ra-226 from the sample matrix, by extraction the ingrowth of the Rn-222 and its alpha emitting decay products with xylene based organic scintillant. The optimum pulse-shape analysis (PSA) value was evaluated by the figure of merit (FM) criterion. Minimum detectable activity (MDA) is about 0.14 Bq/L (3.78 pCi) for the region of Rn-222 and its alpha emitting decay products and 0.06 Bq/L (1.63 pCi) for the region of Po-214 respectively, with 200 min, counting time at PSA level 100 in the low-diffusion polyethylene vial and xylene based cocktail solution. Experiment on the optimum sample-cocktail volume ratio, the influence of agitation and the diffusion of radon from vial were carried out.

  • PDF

Simulation of Rare Earth Elements Removal Behavior in TRU Product Using HSC Chemistry Code (HSC Chemistry 코드를 이용한 TRU 생성물 중의 희토류 원소 제거 거동 모사)

  • Paek, Seungwoo;Lee, Chang Hwa;Yoon, Dalsung;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.207-215
    • /
    • 2020
  • The feasibility of rare earth (RE) removal process via oxidation reactions with UCl3 was investigated using the HSC Chemistry code to reduce the concentrations of RE in transuranic (TRU) products. The composition and thermodynamic data of TRU and RE elements contained in the reference spent fuel were examined. The reactivity was evaluated by calculating equilibrium data considering oxidation reactions with UCl3. Both RE removal rate and TRU recovery rate were evaluated for the two cases, wherein TRU products with different RE concentrations were used. When TRU products were reacted with UCl3, selective oxidation was driven by the difference in the Gibbs free energy of each element. The calculation results imply that the TRU/RE ratio of the final product can be increased by removing RE elements while maintaining the maximum recovery rate of TRU, which is accomplished by controlling the amount of UCl3 injected. Since the results of this study are based on thermodynamic equilibrium data, there are many limitations to apply to the actual process. However, it is expected to be used as an important data for the process design to supply the TRU product of pyroprocessing to SFR's fuel demanding low RE concentrations.

Development of a Continuous Electrolytic System for pH-control with Only One Discharge of Electrolytic Solution by Using Non-equilibrium Steady State Transfer of Ions across Ion Exchange Membranes (이온 교환막에서 이온의 비 평형 정상상태 이동을 이용한 단일 전해액의 배출만을 가지는 pH 조절용 연속식 전해 반응기 개발)

  • Kim Kwang-Wook;Lyu Je-Wook;Kim In-Tae;Park Geun-Il;Lee Eil-Hee
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.101-109
    • /
    • 2005
  • In order to produce only a pH-controlled solution without discharging any unused solution, this work has developed a continuous electrolytic system with a pH-adjustment reservoir being placed before an ion exchange membrane-equipped electrolyzer, where as a target solution was fed into the pH-adjustment reservoir, some portion of the solution in the pH-adjustment reservoir was circulated through the cathodic or anodic chamber of the electrolyzer depending on the type of the ion exchange membrane used, and some other portion of the solution in the pH-adjustment reservoir was discharged from the electrolytic system through other counter chamber with its pH being controlled as acid or base. The phenomena of the pH being controlled in the system could be explained by the electro-migration of the ion species in the solution through the ion exchange membrane under a cell potential difference between anode and cathode and its consequently-occurring non-charge equilibriums and electrolytic water- split reactions in the anodic and cathodic chambers.

  • PDF

Analysis of 226Ra in the Groundwater Using the Gamma-ray Spectroscopy (감마선 분광법을 이용한 지하수 중의 226Ra 분석)

  • Seo, Bum-Kyoung;Lee, Kil-Yong;Yoon, Yoon-Yeol;Lee, Kune-Woo
    • Analytical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.39-47
    • /
    • 2003
  • The measurement of radium ($^{226}Ra$) in the groundwater was established using ${\gamma}$-ray spectroscopy without sample preparation. The background interference by air borne radon daughter nuclides was reduced by $N_2$ gas flow into the counting chamber. Leakage of radon gas produced in the radioactive equilibrium with radium and its daughter nuclides was prevented by use of the air-tighted aluminium container. We investigated the effect of air layer in the counting container. Radioactivity variation due to emanation of radon into the air layer was within the counting error range 5%. When the nitrogen gas was flowed around the detector, peak counts of ${\gamma}$-rays from the daughters of airborne radon was decreased and detection limit was decreased to 0.02 Bq/L. The detection limit of detector was lower than 0.74 Bq/L, the $^{226}Ra$ Maximum Contaminant Level (MCL) in the groundwater proposed by US Environmental Protection Agency (EPA). It was confirmed that $^{226}Ra$ radioactivity in the groundwater could be determined by the ${\gamma}$-ray spectroscopy.