• Title/Summary/Keyword: 방사형 영역 분할법

Search Result 3, Processing Time 0.018 seconds

Detection of Pavement Region with Structural Patterns through Adaptive Multi-Seed Region Growing (적응적 다중 시드 영역 확장법을 이용한 구조적 패턴의 보도 영역 검출)

  • Weon, Sun-Hee;Joo, Sung-Il;Na, Hyeon-Suk;Choi, Hyung-Il
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.209-220
    • /
    • 2012
  • In this paper, we propose an adaptive pavement region detection method that is robust to changes of structural patterns in a natural scene. In order to segment out a pavement reliably, we propose two step approaches. We first detect the borderline of a pavement and separate out the candidate region of a pavement using VRays. The VRays are straight lines starting from a vanishing point. They split out the candidate region that includes the pavement in a radial shape. Once the candidate region is found, we next employ the adaptive multi-seed region growing(A-MSRG) method within the candidate region. The A-MSRG method segments out the pavement region very accurately by growing seed regions. The number of seed regions are to be determined adaptively depending on the encountered situation. We prove the effectiveness of our approach by comparing its performance against the performances of seed region growing(SRG) approach and multi-seed region growing(MSRG) approach in terms of the false detection rate.

Detection of Pavement Borderline in Natural Scene using Radial Region Split for Visually Impaired Person (방사형 영역 분할법에 의한 자연영상에서의 보도 경계선 검출)

  • Weon, Sun-Hee;Kim, Gye-Young;Na, Hyeon-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.7
    • /
    • pp.67-76
    • /
    • 2012
  • This paper proposes an efficient method that helps a visually impaired person to detect a pavement borderline. A pedestrian is equipped with a camera so that the front view of a natural scene is captured. Our approach analyzes the captured image and detects the borderline of a pavement in a very robust manner. Our approach performs the task in two steps. In a first step, our approach detects a vanishing point and vanishing lines by applying an edge operator. The edge operator is designed to take a threshold value adaptively so that it can handle a dynamic environment robustly. The second step is to determine the borderlines of a pavement based on vanishing lines detected in the first step. It analyzes the vanishing lines to form VRays that confines the pavement only. The VRays segments out the pavement region in a radial manner. We compared our approach against Canny edge detector. Experimental results show that our approach detects borderlines of a pavement very accurately in various situations.

Endo- and Epi-cardial Boundary Detection of the Left Ventricle Using Intensity Distribution and Adaptive Gradient Profile in Cardiac CT Images (심장 CT 영상에서 밝기값 분포와 적응적 기울기 프로파일을 이용한 좌심실 내외벽 경계 검출)

  • Lee, Min-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.273-281
    • /
    • 2010
  • In this paper, we propose an automatic segmentation method of the endo- and epicardial boundary by using ray-casting profile based on intensity distribution and gradient information in CT images. First, endo-cardial boundary points are detected by using adaptive thresholding and seeded region growing. To include papillary muscles inside the boundary, the endo-cardial boundary points are refined by using ray-casting based profile. Second, epi-cardial boundary points which have both a myocardial intensity value and a maximum gradient are detected by using ray-casting based adaptive gradient profile. Finally, to preserve an elliptical or circular shape, the endo- and epi-cardial boundary points are refined by using elliptical interpolation and B-spline curve fitting. Then, curvature-based contour fitting is performed to overcome problems associated with heterogeneity of the myocardium intensity and lack of clear delineation between myocardium and adjacent anatomic structures. To evaluate our method, we performed visual inspection, accuracy and processing time. For accuracy evaluation, average distance difference and overalpping region ratio between automatic segmentation and manual segmentation are calculated. Experimental results show that the average distnace difference was $0.56{\pm}0.24mm$. The overlapping region ratio was $82{\pm}4.2%$ on average. In all experimental datasets, the whole process of our method was finished within 1 second.