• 제목/요약/키워드: 방사형 기저 함수 신경망

검색결과 7건 처리시간 0.02초

차분 진화알고리즘 기반 다중 출력 방사형 기저 함수 다항식 신경 회로망 구조 설계 (Structural Design of Differential Evolution-based Multi Output Radial Basis Funtion Polynomial Neural Networks)

  • 김욱동;마창민;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1964-1965
    • /
    • 2011
  • 본 연구에서는 패턴분류를 위해 기존의 방사형 기저 함수 신경회로망(Radial Basis Funtion Neural Network)과 다항식 신경회로망(Polynomial Neural Network)을 결합한 다중 출력 방사형 기저 함수다항식 신경회로망 (Multi Output Radial Basis Funtion Polynomial Neural Network)의 분류기를 제안한다. 제안된 모델은 PNN을 기본 구조로 하여 1층에 기존의 다항식 노드 대신 다중 출력 형태의 RBFNN을 적용 한다. RBFNN의 은닉층에는 기존의 활성함수가 아닌 fuzzy 클러스터링을 사용하여 입력 데이터의 특성을 고려한 적합도를 사용하였다. PNN은 입력변수의 수와 다항식 차수가 모델의 성능을 결정함으로 최적화가 필요하며 본 논문에서는 Differential Evolution(DE)을 사용하여 모델의 구조 및 파라미터를 최적화시켜 모델의 성능을 향상시켰다. 패턴분류기로써의 제안된 모델을 평가하기 위해 pima 데이터를 이용하였다.

  • PDF

입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 PSO를 이용한 RBFNN 기반 분산 적응 추종 제어 (RBFNN Based Decentralized Adaptive Tracking Control Using PSO for an Uncertain Electrically Driven Robot System with Input Saturation)

  • 신진호;한대현
    • 융합신호처리학회논문지
    • /
    • 제19권2호
    • /
    • pp.77-88
    • /
    • 2018
  • 본 논문은 입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 입자 군집 최적화(PSO)를 이용한 방사형 기저 함수 신경망(RBFNN) 기반 분산 적응 추종 제어 기법을 제안한다. 실제적으로 로봇 시스템에서는 구동기의 포화로 인해 입력 전압과 전류 신호 크기가 제한된다. 제안된 제어기는 이러한 입력 포화를 극복하며, 어떠한 로봇 링크 및 구동기의 모델 파라미터들을 요구하지 않는다. 제시된 PSO 기법에서 쓰인 적합도 함수는 추종 오차만이 아니라 전압과 전류의 크기를 포함하는 다중 목적 함수로 표현된다. PSO 기법을 이용하여 제어 이득과 방사형 기저 함수의 개수가 자동으로 조정되어 제어 시스템의 성능이 개선된다. 리아푸노프 안정도 해석에 의해 전체 제어 시스템의 안정도가 보장된다. 제안된 제어 기법의 타당성과 강인성이 시뮬레이션 결과를 통해 검증된다.

방사기저함수 인공 신경망을 이용한 다문화가정 초등학생의 우울증상 경험 예측 모델링 (Radial Basis Function Neural Network Modeling of Depression Experience in Elementary School Students of Multi-cultural Families)

  • 변해원
    • 한국융합학회논문지
    • /
    • 제8권11호
    • /
    • pp.293-298
    • /
    • 2017
  • 이 연구는 방사기저함수(RBF) 인공신경망을 이용하여 우리나라 다문화가정 초등학생의 우울증상 경험 예측 모델링을 구축하였다. 전국조사에 참여한 만 9세 이상 12세 이하 다문화 자녀 초등학생 23,291명(남 12,016명, 여 11,275명)을 분석 대상으로 하였다. 결과변수는 이분형의 우울증상 경험으로 정의하였고, 설명변수는 성, 거주지역, 사회적 차별 경험, 지난 1년간 학교폭력 경험, 한국어 교육 경험, 다문화 가족지원센터이용경험, 한국어 읽기, 한국어 말하기, 한국어 쓰기, 한국어 듣기, 한국 사회 적응 교육 경험을 포함하였다. RBF 인공신경망 모델링 결과, 한국어 교육 경험, 학교 폭력 피해 경험, 한국 사회 차별 경험, 한국어 읽기 수준은 다문화 초등학생의 우울증상을 분류하는 주요 예측 요인이었다. 다문화 아동의 우울증을 예방하기 위해서 한국어 읽기 수준이 저하된 집단에 대한 우선적인 관심과 상담이 필요하다.

제한된 입력 전압을 갖는 전기 구동 로봇 매니퓰레이터에 대한 분산 강인 적응 신경망 제어 (Decentralized Robust Adaptive Neural Network Control for Electrically Driven Robot Manipulators with Bounded Input Voltages)

  • 신진호;김원호
    • 한국소음진동공학회논문집
    • /
    • 제25권11호
    • /
    • pp.753-763
    • /
    • 2015
  • This paper proposes a decentralized robust adaptive neural network control scheme using multiple radial basis function neural networks for electrically driven robot manipulators with bounded input voltages in the presence of uncertainties. The proposed controller considers both robot link dynamics and actuator dynamics. Practically, the controller gain coefficients applied at each joint may be nonlinear time-varying and the input voltage at each joint is saturated. The proposed robot controller overcomes the various uncertainties and the input voltage saturation problem. The proposed controller does not require any robot and actuator parameters. The adaptation laws of the proposed controller are derived by using the Lyapunov stability analysis and the stability of the closed-loop control system is guaranteed. The validity and robustness of the proposed control scheme are verified through simulation results.

직교배열실험을 이용한 해양플랜트 플로트오버 설치 작업용 능동형 DSF의 민감도해석과 근사모델 비교연구 (A Comparative Study on Approximate Models and Sensitivity Analysis of Active Type DSF for Offshore Plant Float-over Installation Using Orthogonal Array Experiment)

  • 김훈관;송창용
    • 한국융합학회논문지
    • /
    • 제12권3호
    • /
    • pp.187-196
    • /
    • 2021
  • 본 연구에서는 해양플랜트의 플로트오버 설치 작업을 위해 개발된 능동형 갑판지지 프레임(Deck support frame, DSF)의 구조설계에 대해 직교배열실험 방법을 이용한 민감도해석과 다양한 근사모델의 적용에 따른 설계공간의 근사화 특성에 관한 비교연구를 수행하였다. 본 연구의 목적은 효율적인 최적설계안 탐색과 높은 정확도의 근사모델을 생성할 수 있는 직교배열실험 기반의 설계 방법론을 제안하는 것이다. 설계인자는 주요 구조부재의 두께 치수를 적용하였고, 응답함수는 중량과 강도성능을 선정하였다. 직교배열실험을 이용하여 설계인자 별 응답함수에 대해 정량적인 영향도가 분석되었고, 최소중량설계를 실현할 수 있는 최상 설계조건이 탐색되었다. 직교배열실험 결과로부터 반응표면 모델, 크리깅 모델, 체비쇼프 직교 다항식 모델, 그리고 방사기저함수 신경망 모델과 같은 다양한 근사모델이 생성되었다. 근사모델의 결과를 통해 직교배열실험 결과의 타당성을 검증하였으며, 능동형 DSF의 설계공간에 대해 방사기저함수 신경망 모델이 가장 높은 정확도로 근사화할 수 있는 것으로 나타났다.

통계적 형상분석을 이용한 엑셀 방사형 차트의 분류와 판별 (Classification and discrimination of excel radial charts using the statistical shape analysis)

  • 이승언;김준홍;최연석;최용석
    • 응용통계연구
    • /
    • 제37권1호
    • /
    • pp.73-86
    • /
    • 2024
  • 평가지표와 같은 수치형 자료의 경우 수치 형태보다 엑셀(Excel)의 방사형 차트 형태로 나타내 시각적으로 표현하면 정보 전달에 더욱 효과적일 것이다. 그러나 개체가 많은 경우 시각적으로 판별하거나 분류하는 것이 쉽지 않다. 이럴 경우 각 개체에 대해 방사형 차트를 이용하여 형상화 시킨 후, 형상의 정보를 대표할 수 있는 형상점을 찾고 형상좌표로 변환해 형상분석을 적용하여 분류 및 판별하는 방법을 알아보고자 한다. 형상분석을 이용하기 위해 주로 분석자의 주관으로 형상점을 얻고 임의의 좌표공간을 생성시켜 좌표를 얻곤 했다. 방사형 차트는 해당 개체의 특징을 나타내는 변수의 개수만큼 형상점이 생기게 되고 이를 선으로 이은 것은 하나의 형상으로 여겨진다. 따라서 중심을 원점으로 두고 2차원 공간으로 정의를 내린 후, X축과 각 특징을 나타내는 축이 이루는 각에 대해 삼각함수를 적용해 형상좌표를 추출해낸다. 변수의 개수가 많아 형상의 모양이 복잡해질 경우 방사형 차트를 이용해 시각화하더라도 쉽게 파악하기 어렵다. 독립성을 보장할 수 없는 변수들에 대해 주성분 분석(PCA)을 실시하여 시각적으로 효과적인 형상을 만든다. PCA를 실시하기 전과 후의 형상에 대해 전통적 판별분석, 서포트벡터머신(support vector machine; SVM), 인공신경망(artificial neural network; ANN)의 기법을 적용시켜 분류표와 분류율을 확인한다. 또한 GPA (generalized procrustes analysis) 적합좌표, 북스테인좌표 2가지 좌표에 대한 판별의 차이를 비교한다. 북스테인좌표의 경우 기저 형상점을 중심으로 형상의 위치와 회전, 척도를 변환한 좌표로써, 분류율에 대해 GPA 형상좌표보다 더 높은 결과를 보이고 있다. 북스테인좌표의 경우 여러 군집 간의 형상을 비교하는데 유용하게 활용된다.

정보 입자화를 통한 방사형 기저 함수 기반 다항식 신경 회로망의 진화론적 설계 (Evolutionary Design of Radial Basis Function-based Polynomial Neural Network with the aid of Information Granulation)

  • 박호성;진용하;오성권
    • 전기학회논문지
    • /
    • 제60권4호
    • /
    • pp.862-870
    • /
    • 2011
  • In this paper, we introduce a new topology of Radial Basis Function-based Polynomial Neural Networks (RPNN) that is based on a genetically optimized multi-layer perceptron with Radial Polynomial Neurons (RPNs). This study offers a comprehensive design methodology involving mechanisms of optimization algorithms, especially Fuzzy C-Means (FCM) clustering method and Particle Swarm Optimization (PSO) algorithms. In contrast to the typical architectures encountered in Polynomial Neural Networks (PNNs), our main objective is to develop a design strategy of RPNNs as follows : (a) The architecture of the proposed network consists of Radial Polynomial Neurons (RPNs). In here, the RPN is fully reflective of the structure encountered in numeric data which are granulated with the aid of Fuzzy C-Means (FCM) clustering method. The RPN dwells on the concepts of a collection of radial basis function and the function-based nonlinear (polynomial) processing. (b) The PSO-based design procedure being applied at each layer of RPNN leads to the selection of preferred nodes of the network (RPNs) whose local characteristics (such as the number of input variables, a collection of the specific subset of input variables, the order of the polynomial, and the number of clusters as well as a fuzzification coefficient in the FCM clustering) can be easily adjusted. The performance of the RPNN is quantified through the experimentation where we use a number of modeling benchmarks - NOx emission process data of gas turbine power plant and learning machine data(Automobile Miles Per Gallon Data) already experimented with in fuzzy or neurofuzzy modeling. A comparative analysis reveals that the proposed RPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.