• Title/Summary/Keyword: 방사형 기저함수

Search Result 39, Processing Time 0.026 seconds

RBFNN Based Decentralized Adaptive Tracking Control Using PSO for an Uncertain Electrically Driven Robot System with Input Saturation (입력 포화를 가지는 불확실한 전기 구동 로봇 시스템에 대해 PSO를 이용한 RBFNN 기반 분산 적응 추종 제어)

  • Shin, Jin-Ho;Han, Dae-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.77-88
    • /
    • 2018
  • This paper proposes a RBFNN(Radial Basis Function Neural Network) based decentralized adaptive tracking control scheme using PSO(Particle Swarm Optimization) for an uncertain electrically driven robot system with input saturation. Practically, the magnitudes of input voltage and current signals are limited due to the saturation of actuators in robot systems. The proposed controller overcomes this input saturation and does not require any robot link and actuator model parameters. The fitness function used in the presented PSO scheme is expressed as a multi-objective function including the magnitudes of voltages and currents as well as the tracking errors. Using a PSO scheme, the control gains and the number of the RBFs are tuned automatically and thus the performance of the control system is improved. The stability of the total control system is guaranteed by the Lyapunov stability analysis. The validity and robustness of the proposed control scheme are verified through simulation results.

Design of Meteorological Radar Echo Classifier Based on RBFNN Using Radial Velocity (시선속도를 고려한 RBFNN 기반 기상레이더 에코 분류기의 설계)

  • Bae, Jong-Soo;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.242-247
    • /
    • 2015
  • In this study, we propose the design of Radial Basis Function Neural Network(RBFNN) classifier in order to classify between precipitation and non-precipitation echo. The characteristics of meteorological radar data is analyzed for classifying precipitation and non-precipitation echo. Input variables is selected as DZ, SDZ, VGZ, SPN, DZ_FR, VR by performing pre-processing of UF data based on the characteristics analysis and these are composed of training and test data. Finally, QC data being used in Korea Meteorological Administration is applied to compare with the performance results of proposed classifier.

Evolutionary Learning Algorithm fo r Projection Neural NEtworks (투영신경회로망의 훈련을 위한 진화학습기법)

  • 황민웅;최진영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.74-81
    • /
    • 1997
  • This paper proposes an evolutionary learning algorithm to discipline the projection neural nctworks (PNNs) with special type of hidden nodes which can activate radial basis functions as well as sigmoid functions. The proposed algorithm not only trains the parameters and the connection weights hut also c~ptimizes the network structure. Through the structure optimization, the number of hidden node:; necessary to represent a given target function is determined and the role of each hidden node is decided whether it activates a radial basis function or a sigmoid function. To apply the algorithm, PNN is realized by a self-organizing genotype representation with a linked list data structure. Simulations show that the algorithm can build the PNN with less hidden nodes than thc existing learning algorithm using error hack propagation(EE3P) and network growing strategy.

  • PDF

Design of Classifier for Sorting of Black Plastics by Type Using Intelligent Algorithm (지능형 알고리즘을 이용한 재질별 검정색 플라스틱 분류기 설계)

  • Park, Sang Beom;Roh, Seok Beom;Oh, Sung Kwun;Park, Eun Kyu;Choi, Woo Zin
    • Resources Recycling
    • /
    • v.26 no.2
    • /
    • pp.46-55
    • /
    • 2017
  • In this study, the design methodology of Radial Basis Function Neural Networks is developed with the aid of Laser Induced Breakdown Spectroscopy and also applied to the practical plastics sorting system. To identify black plastics such as ABS, PP, and PS, RBFNNs classifier as a kind of intelligent algorithms is designed. The dimensionality of the obtained input variables are reduced by using PCA and divided into several groups by using K-means clustering which is a kind of clustering techniques. The entire data is split into training data and test data according to the ratio of 4:1. The 5-fold cross validation method is used to evaluate the performance as well as reliability of the proposed classifier. In case of input variables and clusters equal to 5 respectively, the classification performance of the proposed classifier is obtained as 96.78%. Also, the proposed classifier showed superiority in the viewpoint of classification performance where compared to other classifiers.

Design of Summer Very Short-term Precipitation Forecasting Pattern in Metropolitan Area Using Optimized RBFNNs (최적화된 다항식 방사형 기저함수 신경회로망을 이용한 수도권 여름철 초단기 강수예측 패턴 설계)

  • Kim, Hyun-Ki;Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.6
    • /
    • pp.533-538
    • /
    • 2013
  • The damage caused by Recent frequently occurring locality torrential rains is increasing rapidly. In case of densely populated metropolitan area, casualties and property damage is a serious due to landslides and debris flows and floods. Therefore, the importance of predictions about the torrential is increasing. Precipitation characteristic of the bad weather in Korea is divided into typhoons and torrential rains. This seems to vary depending on the duration and area. Rainfall is difficult to predict because regional precipitation is large volatility and nonlinear. In this paper, Very short-term precipitation forecasting pattern model is implemented using KLAPS data used by Korea Meteorological Administration. we designed very short term precipitation forecasting pattern model using GA-based RBFNNs. the structural and parametric values such as the number of Inputs, polynomial type,number of fcm cluster, and fuzzification coefficient are optimized by GA optimization algorithm.

The Stress Analysis of Structural Element Using Meshfree Method(RPIM) (무요소법(RPIM)을 이용한 구조 요소의 응력해석)

  • Han, Sang-Eul;Yang, Jae-Guen;Joo, Jung-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.311-319
    • /
    • 2007
  • A Meshfree is a method used to establish algebraic equations of system for the whole problem domain without the use of a predefined mesh for the domain discretization. A point interpolation method is based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity Furthermore, the interpolation function passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshfree methods based on the moving least-squares approximation. This study aims to investigate a stress analysis of structural element between a meshfree method and the finite element method. Examples on cantilever type plate, hollow cylinder and stress concentration problems show that the accuracy and convergence rate of the meshfree methods are high.

Performance Improvement of Servo System in the Low Speed Operation Region Using RBFN Disturbance Observer (방사형 기저 함수망 외란관측기를 이용한 서보시스템의 저속응답 성능개선)

  • Lee Kyo-Beum;Yoo Ji-Yoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.467-477
    • /
    • 2004
  • A new scheme to estimate the moment of inertia in the servo motor drive system in very low speed is proposed in this paper. The typical speed estimation scheme in most servo system for low speed operation is sensitive to the variation of machine parameters, especially the moment of inertia. To estimate the motor inertia value, the observer using the Radial Basis Function Networks(RBFN) is applied. The effectiveness of the proposed inertia estimation method is verified by experiments. It is concluded that the speed control performance in the low speed region is improved with the proposed disturbance observer using RBFN.

Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition (숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.355-360
    • /
    • 2015
  • In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.

Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis (클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석)

  • Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.536-541
    • /
    • 2014
  • Data through meteorological radar includes ground echo, sea-clutter echo, anomalous propagation echo, clear echo and so on. Each echo is a kind of non-precipitation echoes and the characteristic of individual echoes is analyzed in order to identify with non-precipitation. Meteorological radar data is analyzed through pre-processing procedure because the data is given as big data. In this study, echo pattern classifier is designed to distinguish non-precipitation echoes from precipitation echo in meteorological radar data using RBFNNs and echo judgement module. Output performance is compared and analyzed by using both HCM clustering-based RBFNNs and FCM clustering-based RBFNNs.

Optimization of FCM-based Radial Basis Function Neural Network using PSO (PSO를 이용한 FCM 기반 RBF 뉴럴네트워크의 최적화)

  • Choi, Jeoung-Nae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1857-1858
    • /
    • 2008
  • 본 논문에서는 FCM 기반 RBF 뉴럴네트워크(FCM-RBFNN) 구조를 제안하고 PSO를 이용한 FCM-RBFNN의 구조 및 파라미터의 최적화 방법을 제시한다. 클러스터링 알고리즘은 퍼지 뉴럴 네트워크에서 멤버쉽함수의 중심점과 반경 등을 결정하는 학습에 일반적으로 사용된다. 제안된 FCM-RBFNN서는 방사기저함수로써 가우시안, 삼각형 타입 등의 정해진 형태를 사용하지 않고 데이터들 사이의 거리에 관계된 계산을 수행하는 FCM에 의해 결정된다. 기존의 RBFNN에서 후반부는 상수형태로써 방사기저함수의 선형결합으로써 표현되는 반면에 제안된 FCM-RBFNN의 후반부는 상수형, 선형, 2차식 등의 다양한 형태의 다항식으로 표현될 수 있으며 다항식의 계수는 WLSE를 이용하여 추정한다. FCM 기반 RBF 뉴럴 네트워크의 성능은 퍼지규칙의 수, 후반부 다항식의 차수 FCM의 퍼지화 계수에 의하여 결정기 때문에 FCM-RBFNN의 구조와 파라미터의 최적화가 요구된다. 본 논문에서는 PSO를 이용하여 FCM-RBFNN의 구조에 관련된 퍼지 규칙의 수, 후반부 다항식의 차수와 파라미터에 관련된 퍼지화 계수를 최적화한다. 또한 후반부 다항식의 계수는 WLSE를 사용하여 추정한다.

  • PDF