• Title/Summary/Keyword: 방사진동

Search Result 437, Processing Time 0.025 seconds

A Performance Analysis of Active Mount with Moving-Coil type Electromagnetic Actuator Installed on the Elastic Foundation (탄성지지된 가동코일형 능동마운트의 성능 분석)

  • Jung, Woo-Jin;Bae, Soo-Ryong;Jeon, Jae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.227-231
    • /
    • 2014
  • Underwater radiated noise is one of the vital factors in underwater weapon systems like submarine. A passive elastic mount is an effective reduction method for the vibration from a ship-board machinery transmitted to the hull which is radiated as noise outside the hull. A passive elastic mount shows the limitation on the vibration reduction and needs multi stage mounting system including double stage one to meet the required underwater radiated noise criteria. It is necessary for the multi stage mounting system to consider the large displacement in the underwater shock explosion. So it is difficult to apply the multi stage mounting system in submarine because of space limitation. Also recent navy sonar system are trying to have the capability to detect the ship-borne acoustic signals in the low frequency range. An alternative to the passive mount is an active mount with moving-coil type electromagnetic actuator based on a conventional rubber mount in the low frequency range. In the previous paper, 4 active mounts with moving-coil type electromagnetic actuator based on the rubber mount were installed on the hard floor of the facility, which means no consideration on the elastic foundation effect for the control of the active mounts was taken into account. In this study, an experimental performance analysis on the active mount was carried out using 4 active mounts installed on the cylindrical structure to investigate the elastic foundation effect.

  • PDF

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

Study on the Characteristics of a Dash System Based on Test and Simulation for Vehicle Noise Reduction (승용차량의 소음저감을 위한 시험과 시뮬레이션을 이용한 대시 시스템의 특성 연구)

  • Yoo, Ji Woo;Chae, Ki-Sang;Cho, Jin Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1071-1077
    • /
    • 2012
  • Low frequency noises(up to about 200 Hz) such as booming are mainly caused by particular modes, and in general the solutions may be found based on mode controls where conventional methods such as FEM can be used. However, at higher frequencies between 0.3~1 kHz, as the number of modes rapidly increases, radiation characteristics from structures, performances of damping sheets and sound packages may be more crucial rather than particular modes, and consequently the conventional FEM may be less practical in dealing with this kinds of structure-borne problems. In this context, so-called 'mid-frequency simulation model' based on FE-SEA hybrid method is studied and validated to reduce noise in this frequency region. Energy transmission loss(i.e. air borne noise) is also studied. A dash panel component is chosen for this study, which is an important path that transmits both structure-borne and air borne energies into the cavity. Design modifications including structural modifications, attachment of damping sheets and application of different sound packages are taken into account and the corresponding noise characteristics are experimentally identified. It is found that the dash member behaves as a noise path. The damping sheet and sound packages have similar influences on both sound radiation and transmission loss. The comparison between experiments and simulations shows that this model could be used to predict the tendency of noise improvement.

A Study on the Performance of a Submerged Breakwater by Using the Singularity Distribution Method (특이점 분포법에 의한 잠수된 방파제의 성능 해석)

  • 이동환;최항순
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.73-79
    • /
    • 2001
  • In this study, a submerged plate-type breakwater is considered, which is supported by elastic foundation. This breakwater makes use of wave phase interaction among the incident, diffracted and radiated waves. We apply a three-dimensional singularity distribution method within the linear potential theory in order to describe the wave field. The submerged plate is assumed to be rigid and the elastic support be a linear spring with constant stiffness. A typical rectangle plate is exemplified for numerical calculation. The thickness of the plate is carefully selected in order to guarantee the solution to be stable by checking the condition number of the system matrix. A parametric study is carried out for examining the effect of the stiffness of the elastic support on performance of the breakwater. We also examine the effect of the submerged depth.

  • PDF

A Analysis on the Estimation Method of the 3D Underwater Radiation Noise Pattern of Cylindrical Structure with the Underwater Experiments (수중실험을 통한 원통구조물의 3차원 수중방사소음 패턴 산출기법 분석)

  • Yi, Jongju;Kang, Myunghwan;Han, Seungjin;Jeong, Hyunjoo;Oh, Junseok;Bae, Sooryong;Jung, Woojin;Seo, Young Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.907-918
    • /
    • 2014
  • In this study for the prediction of 3D underwater radiated noise pattern, a comparison between the proposed method(DHIE, Discrete Helmholtz Integral Equation) and the 3D underwater radiated noise calculation results using the measurement of near-field acoustic pressure data is performed. The near-field acoustic pressure in water is measured for the calculation of the far-field radiated noise pattern and the far-field acoustic power. Also the vibration field of the underwater structure is measured in simultaneously. Using the total far-field acoustic power and the vibration field on the surface of the structure, the proposed method(DHIE) can predict the underwater radiated noise pattern of the far-field The predicted results show the reasonable agreement within about 5dB comparing with the experiment result.

A Parameter Study on the Frequency Characteristics of the Structural-acoustic Coupled System (구조-음향 연성계의 경계값 변화에 따른 방사음 변화)

  • 김양한;서희선
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.604-611
    • /
    • 2004
  • It is well known that wall impedance essentially determines how sound wave transmits from one place to another. The wall impedance is related with its dynamic properties : for example, the mass, stiffness, and damping characteristics. It is noteworthy, however, that the wall impedance is also function of spatial characteristics of two spaces that is separated by the wall. This is often referred that the wall is not locally reacting. In this paper, we have attempted to see how the acoustic characteristics of the two spaces is affected by various structure parameters such as density, applied tension, and a normalized length of the wall. Calculations are conducted for two different modally reacting boundary conditions by modal expansion method. The variation of the Helmholtz mode and the structural-dominated mode are analyzed as the structure parameters vary. The displacement distribution of the structure, pressure and active intensity of the inside and outside cavity are presented at the Helmholtz mode and the structure-dominated mode. It is shown that the frequency characteristics are governed by both structure-and fluid-dominated mode. The results exhibit that the density of the structure is the most sensitive design parameter on the frequency characteristics for the coupling system as we could imagine in the beginning. The Helmholtz mode frequency decrease as density increases. However. it increases as applied tension and an opening size increase. The bandwidth of the Helmholtz mode is mainly affected by density of the structure and its opening size.

Sound Visualization in Time Domain by Using Spatial Envelope (공간 포락을 적용한 시간 영역 음장 가시화)

  • Park, Choon-Su;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Acoustic holography exhibits the spatial distribution of sound pressure in time or frequency domain. The obtained picture often contains far more than what we need in practice. For example. when we need to know only the locations and overall propagation pattern of sound sources. a method to show only what we need has to be introduced. One way of obtaining the necessary information is to use envelope in space. The spatial envelope is a spatially slowly-varying amplitude of acoustic waves which contains the information of sources' location. A spatial modulation method has been theoretically developed to get a spatial envelope. By applying the spatial envelope. not only the necessary information is obtained but also computation time is reduced during the process of holography. The spatial envelope is verified as an effective visualization scheme in time domain by being applied to complicated sound fields.

A Numerical Method for Analysis of the Sound and Vibration of Waveguides Coupled with External Fluid (외부 유체와 연성된 도파관의 진동 및 소음 해석 기법)

  • Ryue, Jung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.448-457
    • /
    • 2010
  • Vibrations and wave propagations in waveguide structures can be analysed efficiently by using waveguide finite element (WFE) method. The WFE method only models the 2-dimensional cross-section of the waveguide with finite elements so that the size of the model and computing time are much less than those of the 3-dimensional FE models. For cylindrical shells or pipes which have simple cross-sections, the external coupling with fluids can be treated theoretically. For waveguides of complex cross-sectional geometries, however, numerical methods are required to deal with external fluids. In this numerical approach, the external fluid is modelled by the boundary elements (BEs) and connected to WFEs. In order to validate this WFE/BE method, a pipe submerged in water is considered in this study. The dispersion diagrams and point mobilities of the pipe simulated are compared to those that theoretically obtained. Also the acoustic powers radiated from the pipe are predicted and compared in both cases of air and water as an external medium.

Design of a Planar LPDA Antenna with Light-Weight Supporting Structure for Installing on an Aircraft (항공기 탑재용 경량화 지지 구조를 갖는 평면 LPDA 안테나 설계)

  • Park, Young-Ju;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • This paper proposes a planar Log-Periodic Dipole Array(LPDA) antenna with light-weight supporting structure for installing on an aircraft. The proposed antenna is designed by applying a planar skeleton supporting structure that has light-weight for an aircraft and is capable of withstanding structural vibration. The material of the planar skeleton supporting structure is a Polyether ether ketone(Peek) which has excellent characteristics on strength and temperature. The proposed antenna is fabricated by attaching the radiating elements of the LPDA on both sides of the supporting structure. The changed input impedance due to the dielectric material of the supporting structure was compensated for by controlling the distance and length of several radiating elements. The 10-dB return loss bandwidths of the designed planar LPDA antenna with light-weight supporting structure are obtained as 0.4~3.1 GHz(7.3:1) in the simulation and 0.41~3.5 GHz(8.2:1) in the measurement. The average gains in 0.5~3 GHz band are 6.77 dBi in the simulation and 6.55 dBi in the measurement. Therefore, we confirm that the designed antenna is appropriate to be installed on an aircraft due to its light-weight structure and wideband directional radiation characteristics.

Basic Study on the Performance Improvement of HD Diesel Engine (대형 디젤엔진의 소음 개선에 대한 기초 연구)

  • 김규철;이삼구;주봉철;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.181-188
    • /
    • 2001
  • The evaluation of the noise for the an existing engine was carried out to improve the current noise level. The applied techniques were 1m air-borne noise, combustion noise analysis, torsional analysis at the front pulley and sound pressure intensity. In addition, the evaluation of the possibility to the noise reduction by means of wrapping the parts was performed to propose the detailed information in engine design. In view of the obtained results, the following countermeasures were recommended to reduce the current noise level through the above methods. Furthermore, in order to assess the influence of combustion noise on the overall engine noise, the noise test was also performed by the change of intake air temperature up to 5$0^{\circ}C$ in steps of 1$0^{\circ}C$. Finally, the fixed design specifications to reduce the engine noise will be decided in consideration of the test data for proto type engine.

  • PDF