• Title/Summary/Keyword: 방사진동

Search Result 437, Processing Time 0.024 seconds

A Study on Acoustic Radiation Reduction of a Vibrating Panel by Using Particle Swarm Optimization Algorithm (군집행동 알고리즘을 이용한 판넬구조물의 방사소음저감에 관한 연구)

  • Jeon, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • In this paper, the author proposes a new method for acoustic radiation optimum design to minimize noise from a vibrating panel-like structure using a collaborative population-based search method called the particle swarm optimization algorithm(PSOA). The PSOA is a parallel evolutionary computation technique initially developed by Kennedy and Eberhart. The acoustic radiation optimization method based on the PSOA consists of two processes. In the first process, the acoustic radiation analysis by an integrated p-version FEM/BEM, which was developed by using MATLAB, is performed to evaluate the exterior acoustic radiation field of the panel. The second process is to search the optimum design variables: 1) Shape of Bezier curves and 2) Shape and position of ribs, to minimize noise from the panel using the PSOA. The optimization method based on the PSOA is compared to that based on the steady state genetic algorithm(SSGA) in order to verify the effectiveness and validity of the optimal solution by PSOA. Finally, it is shown that the optimal designs of the panel obtained by using the PSOA can achieve effective reductions in radiated sound power.

Experimental investigation into infrasound and low-frequency noise radiation characteristics from large wind turbines (중대형 풍력터빈의 저주파 및 초저주파 소음 방사 특성에 대한 실험적 고찰)

  • Lee, Seung-Yub;Cheong, Cheol-Ung;Shin, Su-Hyun;Jung, Sung-Soo;Cheung, Wan-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1482-1489
    • /
    • 2007
  • In this paper, characteristics of infrasound and low-frequency noise emission from large modern wind turbines are experimentally investigated. The sound measurement procedures of IEC 61400-11 and ISO 7196 are utilized to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines using the stall regulation and the pitch control for the power regulation, respectively. It was found that the G-weighted SPLs of low-frequency noise including infrasound shows positive correlation with the wind speeds, irrespective of methods of power regulation. This highlights the potential complaint of local community against the infrasound and low-frequency noise of wind turbines. The comparison of measured data with the existing hearing thresholds and criteria curves shows that it is highly probable that the low-frequency noise from the 1.5 MW and 660 kW wind turbines in the frequency range over 30 Hz leads to the psychological complaint of ordinary adults, and that the infrasound in the frequency range from 5 Hz to 8 Hz causes the complaint by rattling the house fitting such as doors and windows.

  • PDF

Numerical Investigation on Radiation Characteristics of Noise Propagating through Asymmetry Aero-Intake (비대칭 공기흡입구를 통해 전파하는 소음의 방사특성에 관한 수치적 연구)

  • Park, Yong-Hwan;Kim, Min-Woo;Lee, Kyu-Ho;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1476-1481
    • /
    • 2007
  • Numerical investigation on radiation characteristics of discrete frequency noise from asymmetry aero-intakes was carried out. The near-field predictions were obtained by solving the linearized Euler equations with computational aeroacoustic techniques consisting of high order finite difference scheme, non-reflecting boundary conditions, oversetgrid techniques. For the prediction of far-field directivity pattern, the Kirchhoff integral method was applied. By comparing the directivities of noise radiating from the scarf and the scoop aero-intakes with that from an axisymmetric aero-intake, it is shown that noise reduction at downward peak radiation angle can be achieved. The scattering of the radiating acoustic wave by background mean flow shifts the peak lobe radiation angle toward ground and increases the amplitude of the acoustic pressure compared with the cases without mean flow effect.

  • PDF

On-board investigation on whell noise radiation of metro train (지하철 곡선부 운행구간 차륜방사소음에 관한 실험적 연구)

  • Koh, Hyo-In;Cho, Jun-Ho;Hur, Hyun-Mu;Park, Joon-Hyuk;You, Won-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.174-177
    • /
    • 2007
  • In this paper the noise characteristics of metro train is investigated experimentally. It is primarily aimed at observing the squealing noise radiation of each wheel when the vehicle pass the curve sections. This will be used to understand the noise excitation mechanism at the contact area between squealing wheels and rails which induce squeal noise at curve sections. To identify the related key parameters and boundary conditions on-board monitorings of the noise, vibration of the wheel and bogie and displacement behaviour of the wheels and rails have been done. In this paper only noise measurement and results are discussed. From spectrogramms squeal noise due to creepage and noise due to flange contact of the wheels could be identified. At the moment of the curve passing the highest squeal levels are found on the front inner wheel. However since curve noise depends on variable factors more analyses will be followed to identify the squealing wheels and the noise excitation.

  • PDF

An Experimental Study on the Control of Duration time of Impulse Noise from a High Voltage COS Fuse (고전압 COS 퓨즈로부터 방사된 충격성 소음의 지속시간 제어에 관한 실험적 연구)

  • Song, Hwa-Young;Kim, Deok-Han;Lee, Jong-Suk;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.258-261
    • /
    • 2006
  • This study introduces the control of duration time of impulse noises emitted from a high voltage COS fuse of a transformer. When a high voltage COS fuse becomes a short circuit by the over current, the peak sound pressure level over 150 dB(A) is generated at the distance of 2m from a COS Fuse. For the purpose of the reduction of impulse noise, in this study, the reactive type silencer has been utilized. And also electrical interrupting test was experimented. From the experimental results, the reactive type silencer has been shown to have the noise reduction of about 13 dB(A). It has been found that the electrical interception performance of the COS fuse was related to the control of the duration time of impulse noise.

  • PDF

Active Control of External Noise Radiated From Duct Using Sound Intensity (음향 인텐시티를 이용한 관 외부 방사 소음의 능동 제어)

  • 강성우;김양한
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.427-437
    • /
    • 1997
  • Mean active intensity based active control for the cancellation of radiated noise out of the duct exit is studied. The active intensity control strategy is drerived based on the relation of the exterior sound field out of the duct termination and interior sound field of the duct. One of the characteristics of this control strategy is that the control performance can be maintained regardless of the sensor loction, compared with the conventional local pressure control methods at either interior downstream or exterior field positions. It is also suggested that the digital filtering for the active intensity control can be achieved by time-domain filtered-x LMP (Lest-Mean-Product) adaptive algorithm. Experiments for an open-ended duct are performed to compare the active intensity control performance with conventional pressure control one. Active control experiment of local sound pressure is conducted by widely used filtered-x LMS adaptive Algorithm and active intensity control implementaion uses the derived filter d-x LMP algorithm. It is shown that the exterior sound fileds was much better observable by sensing of the active intensity than by just sound pressure. It is also demonstrated that the global control performance of external field by acoustic intensity is superior to the conventional sound pressure control performance.

  • PDF

Finite Element Analysis of a Particle Manipulation System Using Ultrasonic Standing Wave (정재초음파를 이용한 입자제어 시스템의 유한요소해석)

  • Cho, Seung-Hyun;Park, Jae-Ha;Ahn, Bong-Young;Kim, Ki-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.565-570
    • /
    • 2009
  • Micro particles in fluid can be manipulated by using ultrasonic standing wave since the ultrasound makes particles move by means of its acoustic radiation force. This work concerns the micro particle manipulation system using ultrasonic standing wave which consists of a microchannel, an adaptive layer, a reflector, and an ultrasonic transduer. In the present system, the effects of the structural elements should be carefully considered to comprehend the system and find the optimal operational condition. In this investigation, finite element analysis was employed to analyze the system. Some interesting characteristics on the reflector thickness, the channel width, and the operational frequency were observed. Several experimental results were compared with the analytic results. Consequently, this work solidifies the importance of those system parameters and reveals the possibility of various applications of the particle manipulation using ultrasonic standing wave.

  • PDF

Prediction of the Radiated Noise from the Vehicle Intake System (자동차 흡기계의 방사소음 예측에 대한 연구)

  • Kim, Hoi-Jeon;Ih, Jeong-Guon;Lee, Seong-Hyun;Shinoda, K.;Kitahara, S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.105-108
    • /
    • 2005
  • The radiated noise from the automotive intake system should be predicted at the design stage. To this end, the precise measurement of in-duct acoustic source parameters of the intake system, i.e., the source strength and source impedance, is essential. Most of previous works on the measurement of acoustic source parameters were performed under a fixed engine speed condition. However, the requirement of vehicle manufacturer is the noise radiation pattern as a function of engine speed. In this study, the direct method was employed to measure the source parameters of engine intake system under a fixed engine speed and engine run-up condition. It was noted that the frequency spectra of source impedance hardly changes with varying the engine speed. Thus, it is reasonable to calculate the source strength under the engine run-up condition by assuming that source impedance is invariant with engine speed. Measured and conventional source models, i.e., constant pressure source, constant velocity source, and non-reflective source, were utilized to predict insertion loss and radiated sound pressure level. A reasonable prediction accuracy of radiated sound pressure level spectra from the intake system was given in the test vehicle when using the measured source characteristics which were acquired under the operating condition.

  • PDF

Development of a Real-time Fault Diagnosis System for Electric Motors using radiated sound signals (방사음을 이용한 모터 결함 판정용 실시간 전문가 시스템 개발)

  • 경용수;김상명;왕세명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.603-608
    • /
    • 2001
  • In order to distinguish fault electric motors automatically in real time. an intelligent diagnosis technique may be required. This paper presents an automatic fault detection system for electric motors by using their acoustic noises. Time signals of each candidate motor were measured in an anechoic chamber for further analysis. Spectral analysis was first carried out and they showed that two typical types of fault motors could be successfully distinguished in the frequency domain; bearing faults and scratches. Unlike the trend of normal motors that shows only a single dominant peak at around 2000 ㎐, several peaks are bunched together in bearing fault motors. On the other hand, large frequency noises at around 6500 ㎐ are newly arisen in scratchy fault motors. However, the processing time for spectral analysis was rather long for a real time application in production lines. Thus, a number of band-pass filters were used in the time domain instead for a real time application. Before applying filters, the bands of filters were set from the information of spectral analysis. By applying a set of band-pass filters, the RMS values of each filtered signal were calculated, and thus the normal and damaged motors could be successfully distinguished.

  • PDF

Review of the Improved Moving Frame Acoustic Holography and Its Application to the Visualization of Moving Noise Sources (개선된 이동 프레임 음향 홀로그래피 방법과 이동 음원의 방사 소음의 가시화에 대한 응용)

  • 박순홍;김양한
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.669-678
    • /
    • 2000
  • This paper reviews the improved moving frame acoustic holography (MFAH) method and its application. Moving frame acoustic holography was originally proposed to increase the aperture size and the spatial resolution of hologram by using a moving line array of microphones. The hologram of scanned plane can be obtained by assuming the sound field to be product of spatial and temporal information. Although conventional MFAH was only applied to sinusoidal signals, it allows us to visualize the noise generated by moving noise sources by employing a vertical line array of microphones affixed to the ground. However, the sound field generated by moving sources becomes different from that of stationary ones due to the movement of the sources. Firstly, this paper introduces the effect of moving noise sources on the obtained hologram by MFAH and the applicability of MFAH to the visualization of moving sources. Secondly, this paper also reviews improved MFAH that can visualize a coherent narrow band noise and a pass-by noise. The practical applicability of the improved MFAH was demonstrated by visualizing tire noise during a pass-by test.

  • PDF