• Title/Summary/Keyword: 방사성폐기물 처분장

Search Result 344, Processing Time 0.027 seconds

An Introduction to the Expansion Plan of the Underground Repository of Low- and Intermediate-level Radioactive Waste In Forsmark, Sweden (스웨덴 포쉬마크 중저준위 방사성 폐기물 지하 처분장 확장 계획 소개)

  • Kwon, Saeha;Min, Ki-Bok;Stephansson, Ove
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.339-347
    • /
    • 2016
  • The world's first underground repository for low- and intermediate- level radioactive waste (SFR1) has been in operation since 1988. SFR1 can accommodate $1,000m^3$ of radioactive waste per year with 4 chambers and 1 silo with a total capacity of $63,000m^3$ of radioactive waste. With extended operation time of 10 of the 12 nuclear power reactors and dismantling of the other 2 nuclear reactors, more nuclear waste need to be disposed in the future. Therefore, Swedish Nuclear Fuel and Waste Management Company (SKB) submitted a license application for a repository extension (SFR3) that consists of 6 additional rock chambers with a capacity of $108,000m^3$ of radioactive waste and for accommodating 9 boiling water reactor tanks. In this study, plans for the extension SFR3 are presented with the geological, geomechanical and hydrogeological issues to be considered.

Seismic Fragility Evaluation of Surface Facility Structures in Intermediate-Low Level Radioactive Waste Repository (중.저준위 방사성폐기물 처분장의 지상시설에 대한 지진 취약도 평가)

  • Park, Jun-Hee;Kim, Min-Kyu;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • Since a seismic exceeding design load can result in exposing radioactive material during disposal process of radioactive wastes, the repository should be designed with enough seismic margin. In this paper, a seismic fragility analysis was performed to evaluate the seismic capacity of surface facility structures. According to the analysis results, since inspection & store facility and radioactive waste facility have a rectangle geometry, the seismic capacity was differently presented about 23%~43% according to the axis of structures. The HCLPF capacity of inspection & store facility and radioactive waste facility was 0.52g and 0.93g, respectively. And it was observed that seismic capacity of radioactive waste facility was similar to that of a containment for nuclear power plants.

Development of the Safety Assessment Code (CALM) for the Disposal of Low-and Intermediate-Level Radioactive Waste (중ㆍ저준위 방사성폐기물 처분안정성 평가코드(CALM) 개발)

  • Han, Kyong-Won;Cho, Won-Jin;Lee, Han-Soo;Lee, Youn-Myoung;Park, Hee-Sung;Suh, Kyung-Suk;Park, Heu-Joo-;Park, Hun-Hwee
    • Nuclear Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 1990
  • A safety assessment computer code CALM (Computer program of Assessment for LILW Management) is developed for the theoretical prediction of long-term safety of low-and intermediate-level radioactive waste disposal. CALM is composed of three submodels, which are the resaturation model, the geosphere migration model, and the radiation dose model. For the verification of its usefulness, the safety assessment of an assumed waste repository is performed. The results show that the computer code, CALM developed through this study can be a useful tool for the safety assessment of low- and intermediate-level radioactive waste repository.

  • PDF

Disposal Approach for Long-lived Low and Intermediate-Level Radioactive Waste (장반감기 중저준위 방사성 폐기물의 국외 처분동향과 처분방안)

  • Park, Jin-Beak;Park, Joo-Wan;Kim, Chang-Lak
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11a
    • /
    • pp.143-152
    • /
    • 2005
  • There certainly exists the radioactive inventory that exceeds the waste acceptance criteria for final disposal of the low and intermediate-level radioactive waste. In this paper, current disposal status of the long-lived radioactive waste in several nations are summarized and the basic procedures for disposal approach are suggested. With this suggestion, intensive discussion and research activities can hopefully be launched to set down the possible resolutions to dispose of the long-lived radioactive waste.

  • PDF

A Study on the Development of the FEP and Scenario for the HLW Disposal in Korea (우리나라의 고준위폐기물 처분을 위한 FEP과 시나리오 개발)

  • Kang, Chul-Hyung;Jeong, Jong-Tae;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.133-141
    • /
    • 2012
  • The impacts influenced on the performance and safety of a repository are classified as units of Features, Events, and Processes (FEP), for the total system performance assessment (TSPA) related to the permanent disposal of HLW. The importance is evaluated in consideration of the frequency, consequence, regulation, suitability of a specific site, etc. and then these are grouped as a similar FEP. A scenario describing the migration of radionuclide from the repository to the biosphere is derived from understanding the interaction among these groups. KAERI has developed the KAERI FEP lists by review and collation of the foreign studies. The KAERI FEP list has been reviewed by several Korean experts. The five major scenarios describing possible future evolutions of the geological disposal system have been developed by RES and PID methods. Also the CYPRUS which is a KAERI integrated database management system for the total system performance assessment (TSPA) related to the permanent disposal of HLW has been developed and the results of the FEP and scenario development have been uploaded in this system.

방사성 폐기물 처분장 입지 후 지역 변화 모델 구축

  • O, Yeong-Min;Yu, Jae-Guk
    • Proceedings of the Korean System Dynamics Society
    • /
    • 2006.04a
    • /
    • pp.123-149
    • /
    • 2006
  • 본 연구는 방사성폐기물 처분시설(radioactive waste repository)의 입지를 가정하여, 처분시설이 경상북도 경주시에 발생시키는 경제적, 사회적 효과를 분석하는데 목적이 있다. 정부는 처분장 유치의 유인책(incentives)으로서 경주 지역주민들을 위하여 다양한 정책적 수단을 마련하였다. 처분시설 입지에 따른 특별지원금 3,000 억원 지원, 수거물 반입 수수료 지원(년당 50-100억원), 한국수력원자력(주) 본사이전, 양성자가속기 사업 추진 등이 그것이다. 이들 지원사업들이 가져오는 변화를 시스템 다이내믹스(System Dynamics) 기법을 적용하여 지역사회의 인구, 산업, 토지, SOC, 지방재정 등이 어떻게 변화하는지 추적해 봄으로써 도시체제의 동태성(urban system dynamics)을 이해하고 처분장 시설이 지역에 입지했을때, 미래에 발생 가능한 문제점이 없는지 밝혀내고자한다. 이를 위하여 시뮬레이션 모델링에 입지 지역의 특성과 현황을 반영하여 처분장입지에 따른 지역의 동태적인 변화과정과 경향을 추정해 보고, 현재 예정되어 있는 지원사업이 충분한지, 이외에 다른 정책적 지원이 필요한지를 알아본다. 본 연구의 의미는 이처럼 경주지역 주민들이 처분장의 지역입지를 만족스럽게 행각하고 소외감 없이 생활을 영위할 수 있도록 정책적 지원 프로그램을 작성하는데 기초가 되는 연구라는 점에 있다고 하겠다.

  • PDF

Development of Ground Motion Response Spectrum for Seismic Risk Assessment of Low and Intermediate Level Radioactive Waste Repositories (중·저준위 방사성 폐기물 처분장의 지진위험도 평가를 위한 지반운동스펙트럼 산정)

  • Kim, Min-Kyu;Rhee, Hyun-Me;Lee, Kyoung-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • In this study, a ground motion response spectrum for the seismic risk assessment of low and intermediate level radioactive waste repositories was developed. For the development of the ground motion response spectrum, a probabilistic seismic hazard analysis (PSHA) was performed. Through the performance of a PSHA, a seismic hazard curve which was based on a seismic bed rock was developed. A uniform hazard spectrum was determined by using a developed seismic hazard curve. Artificial seismic motions were developed based on the uniform hazard spectrum. A seismic response analysis was performed on the developed artificial seismic motion. Finally, an evaluation response spectrum for the seismic risk assessment analysis of low and intermediate level radioactive waste repositories was developed.