• Title/Summary/Keyword: 방사성낙하물

Search Result 4, Processing Time 0.019 seconds

Behaviors of Nuclear Spent Fuel Dry Storage System for Flask Dropping and Truck Collision (플라스크 낙하 및 이송차량 충돌에 대한 사용후 핵연료 건식저장시스템의 거동)

  • Song, Hyung-Soo;Min, Chang-Shik;Yoon, Dong-Yong;Chung, Hong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.95-102
    • /
    • 2005
  • Delaying and objection for the construction of storage spent-fuel disposal has prompted to consider expanding on-site storage of spent reactor fuel since it can eliminate the need for costly and difficult shipping and control of the spent fuel completely under the direction of the owner-utility. The dry storage unit developed in Canada can accommodate Korea heavy water reactor fuel elements and become a candidate for the Korean market. In this paper, finite element analysis were carried out in order to investigate the structural behavior of the nuclear spent fuel dry storage system, which is subjected to impact loads such as collision of a truck load and dropping of flask under the irregular operation.

A Structural Analytic Evaluation of a Connote Pad In a Spent Fuel Dry Storage Cask (사용후핵연료 건식저장용기의 콘크리트 받침대에 대한 구조해석평가)

  • Kim Dong-Hak;Seo Ki-Seog;Lee Ju-Chan;Lee Yeon-Do;Cho Chun-Hyung;Lee Dae-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.139-152
    • /
    • 2006
  • A spent fuel storage cask is required to prove the safety of a canister under a hypothetical accidental drop condition. A hypothetical accidental drop condition means that a canister is assumed to be a lee drop on to a pad of the storage cask during loading it into a storage cask. A pad of the storage cask absorbs shock to maintain the structural integrities of a canister under a hypothetical accidental drop condition. In this paper a finite element analysis for various pad structures was carried out to improve the structural integrity of a canister under a hypothetical accidental drop condition. A pad of a storage cask was designed a steel structure with concrete. The 1/4 height of a pad was modified with a structure composed of a steel and a polyurethane foam as a impact limiter. The effect of a shape of a steel structure was studied. The effects of the thickness of a steel structure and the density of a polyurethane foam was also studied.

  • PDF

A Study on Distribution of Cs-137 and Sr-90 in Soils around Taejon Region (대전지역 토양에 대한 Cs-137 및 Sr-90 방사능농도 분포 조사)

  • Lee, Myung-Ho;Lee, Chang-Woo;Hong, Kwang-Hee;Choi, Yong-Ho;Kim, Sang-Bok;Park, Doo-Won;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.123-128
    • /
    • 1995
  • The concentration of Cs-137 and Sr-90 has been analyzed in soils around Taejon region. A correalation was found between the concentration of Cs-137 and the organic matter content. The mean value of Cs-137 was 14.37Bq/kg-dry and that of Sr-90 was 7.95Bq/kg-dry in undisturbed soils around Taejon region. The concentration ratio of Cs-137/Sr-90 was 1.99. The distribution of Cs-137 and Sr-90 was similar to cumulative fallout level and had been more affected by nuclear weapons test than by the chernobyl accident.

  • PDF

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF