• Title/Summary/Keyword: 방사선 치료 만족도

Search Result 227, Processing Time 0.025 seconds

Analysis of Learning Effect through the Development and Application of Virtual Reality(VR) Education Content for Radiology Students (방사선과 학생을 위한 가상현실 교육콘텐츠 개발 및 적용을 통한 학습효과 분석)

  • Shim, Jae-Goo;Kwon, Soon-Moo
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.519-524
    • /
    • 2020
  • This study developed radiation therapy contents based on virtual reality technology and applied them to radiation students. A survey was conducted to analyze the relationship between learning effects and learning satisfaction to students who used virtual reality education videos to analyze their learning performance. 71 students radiology department were classified into two groups one that experienced virtual reality and the other that did not experienced virtual reality. We surveyed between the two groups analyzed self-directed learning, self-learning efficacy and learning satisfaction. As a result, the comparison between the two groups showed no difference between self-directed learning and self-learning efficacy. But the learning satisfaction was significant from 2.64±0.83 to 3.20±0.88 in the problem solving process for groups applying virtual reality contents. Therefore, learning satisfaction has improved experienced group virtual reality content and the materials for virtual reality education can be applied more efficiently in non-face-to-face lectures.

Comparative and Feasibility Evaluation of Detection Ability of Relative Dosimeters using CsPbI2Br and CsPbIBr2 Materials in Brachytherapy QA (근접방사선치료 QA에서 CsPbI2Br과 CsPbIBr2를 이용한 상대 선량계들의 검출 능력 비교 및 적용가능성 평가)

  • Seung-Woo Yang;Sung-Kwang Park
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.433-440
    • /
    • 2023
  • High dose rate brachytherapy is a cancer treatment that intensively irradiates radiation to tumors by inserting isotopes with high dose rates into the body. For such a treatment, it is necessary to deliver an accurate dose to the tumor tissue through an accurate treatment plan while delivering only a minimum dose to the normal tissue. Therefore, it is very important to check the location accuracy of the source through accurate Quality Assurance (QA) in clinical practice. However, since the source position is determined using a ruler, automatic radiographer, video monitor, etc. in clinical practice, it yields inaccurate results. In this study, a semiconductor dosimeter using CsPbI2Br and CsPbIBr2 was fabricated. And, in order to analyze whether it is more suitable for the relative QA dosimeter for brachytherapy device among the two materials, the radiation detection ability of each was compared and evaluated. In order to evaluate the radiation detection ability in brachytherapy, the reproducibility and linearity of the two materials were evaluated in 192IR. In the reproducibility evaluation, CsPbI2Br presented a Relative Standard Deviatio(RSD) of 0.98% and CsPbIBr2 presented an RSD of 3.45%. In the linearity evaluation, the coefficient of determination (R2) of CsPbI2Br was presented as 0.9998, and the R2 of CsPbIBr2 was presented as 0.9994. As a result of the evaluation, it was found that CsPbI2Br was more stable in radiation detection while satisfying the evaluation criteria in the dosimeter manufactured in this experiment. Therefore, CsPbI2Br material is suitable for application as a relative dosimeter for radiation detection in brachytherapy devices.

Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm (선량계산 및 최적화 알고리즘에 따른 치료계획의 영향 분석)

  • Kim, Dae-Sup;Yoon, In-Ha;Lee, Woo-Seok;Baek, Geum-Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • Purpose: Analyze the Effectiveness of Radiation Treatment Planning by dose calculation and optimization algorithm, apply consideration of actual treatment planning, and then suggest the best way to treatment planning protocol. Materials and Methods: The treatment planning system use Eclipse 10.0. (Varian, USA). PBC (Pencil Beam Convolution) and AAA (Anisotropic Analytical Algorithm) Apply to Dose calculation, DVO (Dose Volume Optimizer 10.0.28) used for optimized algorithm of Intensity Modulated Radiation Therapy (IMRT), PRO II (Progressive Resolution Optimizer V 8.9.17) and PRO III (Progressive Resolution Optimizer V 10.0.28) used for optimized algorithm of VAMT. A phantom for experiment virtually created at treatment planning system, $30{\times}30{\times}30$ cm sized, homogeneous density (HU: 0) and heterogeneous density that inserted air assumed material (HU: -1,000). Apply to clinical treatment planning on the basis of general treatment planning feature analyzed with Phantom planning. Results: In homogeneous density phantom, PBC and AAA show 65.2% PDD (6 MV, 10 cm) both, In heterogeneous density phantom, also show similar PDD value before meet with low density material, but they show different dose curve in air territory, PDD 10 cm showed 75%, 73% each after penetrate phantom. 3D treatment plan in same MU, AAA treatment planning shows low dose at Lung included area. 2D POP treatment plan with 15 MV of cervical vertebral region include trachea and lung area, Conformity Index (ICRU 62) is 0.95 in PBC calculation and 0.93 in AAA. DVO DVH and Dose calculation DVH are showed equal value in IMRT treatment plan. But AAA calculation shows lack of dose compared with DVO result which is satisfactory condition. Optimizing VMAT treatment plans using PRO II obtained results were satisfactory, but lower density area showed lack of dose in dose calculations. PRO III, but optimizing the dose calculation results were similar with optimized the same conditions once more. Conclusion: In this study, do not judge the rightness of the dose calculation algorithm. However, analyzing the characteristics of the dose distribution represented by each algorithm, especially, a method for the optimal treatment plan can be presented when make a treatment plan. by considering optimized algorithm factors of the IMRT or VMAT that needs to optimization make a treatment plan.

  • PDF

Evaluation of the Modified Hybrid-VMAT for multiple bone metastatic cancer (다중표적 뼈 전이암의 하이브리드 세기변조(modified hybrid-VMAT) 방사선치료계획 유용성 평가)

  • Jung, Il Hun;Cho, Yoon Jin;Chang, Won Suk;Kim, Sei Joon;Ha, Jin Sook;Jeon, Mi Jin;Jung, In Ho;Kim, Jong Dea;Shin, Dong Bong;Lee, Ik Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.161-167
    • /
    • 2018
  • Purpose : This study evaluates the usefulness of the Modified Hybrid-VMAT scheme with consideration of background radiation when establishing a treatment plan for multiple bone metastatic cancer including multiple tumors on the same axis. Materials and Methods : The subjects of this study consisted of five patients with multiple bone metastatic cancer on the same axis. The planning target volume(PTV) prescription dose was 30 Gy, and the treatment plan was established using Ray Station(Ray station, 5.0.2.35, Sweden). In the treatment plan for each patient, two or more tumors were set as one isocenter. A volumetric modulated arc therapy(VMAT) plan, a hybrid VMAT(h) plan with no consideration of background radiation, and a modified hybrid VMAT(mh) with consideration of background radiation were established. Then, using each dose volume histogram(DVH), the PTV maximum dose($D_{max}$), mean dose($D_{mean}$), conformity index(CI), and homogeneity index(HI) were compared among the plans. In addition, the organ at risk(OAR) of each treatment site was evaluated, and the total MU(Monitor Unit) and treatment time were also analyzed. Results : The PTV $D_{max}$ values of VMAT, VMAT(h) and VMAT(mh) were 3188.33 cGy, 3526 cGy, and 3285.67 cGy, the $D_{mean}$ values were 3081 cGy, 3252 cGy, and 3094 cGy; the CI values were $1.35{\pm}0.19$, $1.43{\pm}0.12$, and $1.30{\pm}0.06$; the HI values were $1.06{\pm}0.01$, $1.14{\pm}0.06$, and $1.09{\pm}0.02$; and the VMAT(h) OAR value was increased 3 %, and VMAT(mh) OAR value was decreased 18 %, respectively. Furthermore, the mean MU values were 904.90, 911.73, and 1202.13, and the mean beam on times were $128.67{\pm}10.97$, $167.33{\pm}7.57$, and $190.33{\pm}4.51$ respectively. Conclusions : Applying Modified Hybrid-VMAT when treating multiple targets can prevent overdose by correcting the overlapping of doses. Furthermore, it is possible to establish a treatment plan that can protect surrounding normal organs more effectively while satisfying the inclusion of PTV dose. Long-term follow-up of many patients is necessary to confirm the clinical efficacy of Modified Hybrid-VMAT.

  • PDF

The Effect of Radiological Technologist Job Satisfaction and Job Stress on Organizational Commitment - Focused on the Busan Area - (방사선사의 조직문화 및 리더십, 조직몰입이 조직만족에 미치는 영향 -부산지역을 중심으로-)

  • Kang, Yeon-Hee;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.415-424
    • /
    • 2020
  • The purpose of this study was to survey and analyze the effects of job satisfaction and job stress on organizational commitment among radiological technologist working in primary, secondary and tertiary hospitals in Busan. As a result, the scores of job satisfaction and organizational effectiveness of the tertiary hospital were significantly higher (p<0.05). In the group with no turnover experience, the organizational commitment, job satisfaction, and organizational effectiveness scores were significantly higher (p<0.05, p<0.01). Job stress was not statistically significant between variables in the analysis of general characteristics. Hierarchical regression analysis showed that the radiological technologist organizational commitment had the highest impact on job satisfaction (β=0.703, p<0.001). Radiological technologist are important in the diagnosis and radiation therapy of diseases in hospital. Therefore, based on the results of this study, it will be helpful to analyze the relationship between job satisfaction, job stress and organizational commitment of radiological technologist, and to prepare a plan to increase their organizational commitment.

Implant Isolation Characteristics for 1.25 Gbps Monolithic Integrated Bi-Directional Optoelectronic SoC (1.25 Gbps 단일집적 양방향 광전 SoC를 위한 임플란트 절연 특성 분석)

  • Kim, Sung-Il;Kang, Kwang-Yong;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.52-59
    • /
    • 2007
  • In this paper, we analyzed and measured implant isolation characteristics for a 1.25 Gbps monolithic integrated hi-directional (M-BiDi) optoelectronic system-on-a-chip, which is a key component to constitute gigabit passive optical networks (PONs) for a fiber-to-the-home (FTTH). Also, we derived an equivalent circuit of the implant structure under various DC bias conditions. The 1.25 Gbps M-BiDi transmit-receive SoC consists of a laser diode with a monitor photodiode as a transmitter and a digital photodiode as a digital data receiver on the same InP wafer According to IEEE 802.3ah and ITU-T G.983.3 standards, a receiver sensitivity of the digital receiver has to satisfy under -24 dBm @ BER=10-12. Therefore, the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysed and measured results of the implant structure, the M-BiDi SoC with the implant area of 20 mm width and more than 200 mm distance between the laser diode and monitor photodiode, and between the monitor photodiode and digital photodiode, satisfies the electrical crosstalk level. These implant characteristics can be used for the design and fabrication of an optoelectronic SoC design, and expended to a mixed-mode SoC field.

Dosimetric Comparison of One Arc & Two Arc VMAT Plan for Prostate cancer patients (Prostate Cancer 환자에 대한 One Arc와 Two Arc VMAT Plan의 선량 측정 비교 분석)

  • Kim, Byoung Chan;Kim, Jong Deok;Kim, Hyo Jung;Park, Ho Chun;Baek, Jeong Ok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.107-116
    • /
    • 2018
  • Purpose : Intensity-modulated radiation therapy(IMRT) has been widely used for radiation therapy of Prostate Cancer because it can reduce radiation adverse effects on normal tissues and deliver more dose to the Prostate than 3D radiation therapy. Volumetric modulated arc therapy(VMAT) has been widely used due to recent advances in equipment and treatment techniques. VMAT can reduce treatment time by up to 55 % compared to IMRT, minimizing motion error during treatment. Materials and Methods : In this study, compared the MU and DVH values of 10 patients with prostate cancer by classifying them into 4 groups with 5 LN-Prostate groups and 5 Only-Prostate. And DQA measurements were performed using ArcCHECK and MapCHECK. Results : The results of Target and OAR dose distribution of Prostate patients are as follows. $D_{max}$ was in the range of 100~110 % in 4 groups, and more than 110 % of hot spot was not seen. Only-Prostate ($P_1$, $P_2$) without LN had a satisfactory dose distribution for the target dose, but slightly better for 2 arc plan($P_2$) than 1 arc plan($P_1$). The target dose $D_{98%}$ distribution in the LN-Prostate ($P_{L1}$, $P_{L2}$) group showed better 2 arc plan($P_{L2}$) than 1 arc plan($P_{L1}$), But in the case of 1 arc plan($P_{L1}$), the target dose $D_{98%}$ value was not enough. In OAR, the dose distribution of 1 Arc($P_1$) Plan and 2 Arc($P_2$) Plan in the Only-Prostate ($P_1$, $P_2$) Group satisfied the prescribed dose value. But, The dose distribution of 1 arc($P_1$) was slightly higher. In LN-Prostate OAR, 1 Arc($P_{L1}$) Plan showed higher dose than the prescribed dose. The Gamma evaluation pass rate of ArcCHECK and MapCHECK calculated from the DQA measurements was slightly higher than 99 % and the mean error range of the point dose measurements using the CC04 ion chamber was less than 1 %. Conclusion : In this study, Only-Prostate ($P_1$, $P_2$) group, the dose of 2 Arc plan was better. However, considering the treatment time and MU value, 1 Arc treatment method was more suitable. In the LN-Prostate ($P_{L1}$, $P_{L2}$) group, 2 Arc($P_{L2}$) treatment method showed better results and satisfied with Target $D_{98%}$ and OAR prescription dose.

  • PDF

Splenic Irradiation in Chronic Myeologenous Leukemia (만성골수성백혈병 15예의 비장조사)

  • Oh Yoon Kyeong;Kwon Hyung Chul;Yoon Sei Chul;Bahk Yong Whee;Kim Choon Choo;Kim Dong Jip
    • Radiation Oncology Journal
    • /
    • v.3 no.2
    • /
    • pp.137-144
    • /
    • 1985
  • Radiation therapy was the treatment of choice for CML in the past, in the form of SI or radioactive phosphorus. Its use has been replaced to a large extent by various chemotherapeutic agents. Recently SI in CML has been used, both to relieve painful splenomegaly and to take advantage of an indirect effect of SI on unirradiated bone marrow. We have treated 15 CML cases who had a huge spleen during chemotherapy or even after chemotherapy by 6 MV linear accelerator during the past two years at the Division of Radiation Therapy, Kang Nam St. Mary's Hospital, Catholic College. Response to SI has been rated according to the scoring system of Roger W. Byhardt, et al. which evaluated the splenic and hematologic response as well as the response of disease-related systems. According to this scoring system, most patients demonstrated a significant relief of splenomegaly along with improvement of hemogram. And we observed the change of Karnofsky Performance Status after SI, and survival after a confirmative diagnosis and SI.

  • PDF

Fabrication and Evaluation of Mercury(II) Iodide Unit Cell Dosimeter to Confirm the Feasibility of Digital Quality Assurance in Intracavitary Radiotherapy (방사선 근접치료의 디지털 정도관리 가능성 확인을 위한 HgI2 Unit Cell 선량계의 제작 및 평가)

  • Jung, Jae-Hoon;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.257-263
    • /
    • 2022
  • In intracavitary radiotherapy, it is essential to verify the correct location of radiation source among quality control items because an incorrect location will irradiate an unnecessary dose to normal tissues. As a basic study of digital line dosimeters, this study fabricated a unit cell dosimeter based on polycrystalline mercury (II) iodide (HgI2) and compared its performance with a diode. The study result showed that for reproducibility, the relative standard deviation (RSD) was 1.21%, satisfying the RSD evaluation criterion of within 1.5%. Considering linearity, the coefficient of determination R2 showed an excellent result of 0.9997. Regarding the evaluation of distance dependence, it showed a similar trend in general with a difference of 0.035 cm for intensity 50% when compared with the inverse square value. This study suggests the applicability of a digital dosimeter for brachytherapy quality control by evaluating the performance of the HgI2 dosimeter. This study on dosimeter for candidate photoconductor materials can be used as basic data in all areas using radiation.

The Accuracy Evaluation according to Dose Delivery Interruption and Restart for Volumetric Modulated Arc Therapy (용적변조회전 방사선치료에서 선량전달의 중단 및 재시작에 따른 정확성 평가)

  • Lee, Dong Hyung;Bae, Sun Myung;Kwak, Jung Won;Kang, Tae Young;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • Purpose: The accurate movement of gantry rotation, collimator and correct application of dose rate are very important to approach the successful performance of Volumetric Modulated Arc Therapy (VMAT), because it is tightly interlocked with a complex treatment plan. The interruption and restart of dose delivery, however, are able to occur on treatment by various factors of a treatment machine and treatment plan. If unexpected problems of a treat machine or a patient interrupt the VMAT, the movement of treatment machine for delivering the remaining dose will be restarted at the start point. In this investigation, We would like to know the effect of interruptions and restart regarding dose delivery at VMAT. Materials and Methods: Treatment plans of 10 patients who had been treated at our center were used to measure and compare the dose distribution of each VMAT after converting to a form of digital image and communications in Medicine (DICOM) with treatment planning system (Eclipse V 10.0, Varian, USA). We selected the 6 MV photon energy of Trilogy (Varian, USA) and used OmniPro I'mRT system (V 1.7b, IBA dosimetry, Germany) to analyze the data that were acquired through this measurement with two types of interruptions four times for each case. The door interlock and the beam-off were used to stop and then to restart the dose delivery of VMAT. The gamma index in OmniPro I'mRT system and T-test in Microsoft Excel 2007 were used to evaluate the result of this investigation. Results: The deviations of average gamma index in cases with door interlock, beam-off and without interruption on VMAT are 0.141, 0.128 and 0.1. The standard deviations of acquired gamma values are 0.099, 0.091, 0.071 and The maximum gamma value in each case is 0.413, 0.379, 0.286, respectively. This analysis has a 95-percent confidence level and the P-value of T-test is under 0.05. Gamma pass rate (3%, 3 mm) is acceptable in all of measurements. Conclusion: As a result, We could make sure that the interruption of this investgation are not enough to seriously affect dose delivery of VMAT by analyzing the measured data. But this investigation did not reflect all cases about interruptions and errors regarding the movement of a gantry rotation, collimator and patient So, We should continuously maintain a treatment machine and program to deliver the accurate dose when we perform the VMAT for the many kinds of cancer patients.

  • PDF