• Title/Summary/Keyword: 방사선 출력

Search Result 242, Processing Time 0.025 seconds

Steel Plate Thickness Gauge by means of Gamma-Ray Backscattering (감마선 빽스켓터링을 이용한 철판 두께 측정에 관하여)

  • 김덕진;김동훈
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.3 no.1
    • /
    • pp.18-23
    • /
    • 1966
  • An experimental study of a steel plate thickness gauge by means of the measurements of backscatered gamma-rays has been carried out. The difference between this and other methods is that this method does not include any shilding matterials in the detecting probe, because the primary radiations and the backscattered radiations are detected simultaneously by an NaI (TI) scintillating crystal, and the activity of the Co-60 source used is low enough. In this thickness gauge, the thickness of the steel plates can be read directly on the counting ratemeter scale. The optimum conditions in the source-to-detector distance, window width of the analyzer, energy and strength of the gamma-ray source were found experimentally. The results have shown that the accuracy of the gauge was about $\pm$3% in the range of 3 to 8mm thickness. This gauge can be used to detect the pits or corrosions on the inner walls of the steel pipes.

  • PDF

A Study of X-ray Output for Diagnostic X-ray Equipment (진단용 X선 발생 장치의 X선 출력에 관한 연구)

  • Ko, Shin-Gwan;Ahn, Bong-Seon;Jang, Sang-Sup;Choi, Jong-Woon;Shin, Young-Soon
    • Journal of radiological science and technology
    • /
    • v.18 no.2
    • /
    • pp.61-73
    • /
    • 1995
  • For the managements of the diagnostic X-ray equipments, the authors examined the output of single phase rectification assembly, Three phase rectification assembly and serial radiographic appartus, and got the following conclusions. 1. When the tube voltages in X-ray control panels ware compared to the measured values on the kVp pulse meter, only little differences were detected in all the X-ray equipments. And most of the equipments were all well managed within the internationally permitted limits, excepting the 12.02 % error at 120 kVp in three phase rectifying assembly. 2. As for the X-ray qualities affecting the X-ray images, the serial radiographic apparatus showed excellence, while the single phase rectification assembly were somewhat inferior to the others only maining the internationally recommended limits. 3. The tube voltage ranges where the X-ray output showed excellence were $100{\sim}200\;mA$ in serial radiographic apparatus, $200{\sim}350\;mA$ in three phase rectification assembly and $350{\sim}400\;mA$ in single phase rectification assembly respectively. 4. In the repeatability test of the X-ray equipments, CVs were in the range of $0.0029{\sim}0.049$, which is within the HEW or KS standards. Consequently all the equipments are thought to be well-manage. 5. This study on characteristics and output of the X-ray equipments was accomplished within a limited short time. Long-time researches on the function managements for the X-ray equipments should be followed along with the periodical checking the output for reduction of X-ray exposures to the patients or radio-technologists, and for maintanance and prediction of trouble of the equipments.

  • PDF

Quality Assurance of Operation of Enhanced Dynamic Wedges in Linac (선형가속기의 동적쐐기(EDW) 작동에 대한 품질보증)

  • Jeong, Dong-Hyeok;Kim, Jhin-Kee;Kang, Jeong-Ku;Son, Kwang-Jae;Lee, Jeong-Ok
    • Journal of radiological science and technology
    • /
    • v.33 no.2
    • /
    • pp.133-141
    • /
    • 2010
  • The evaluation of Varian enhanced dynamic wedges (EDW) were performed in terms of quality assurance in external radiotherapy. The seven (10, 15, 20, 25, 30, 45, 60 deg.) EDW angles were evaluated for 6 and 15 MV x-rays in Varian Linac. The STT (segmented treatment table) for a field were calculated and compared with actual movement of the jaw using Dynalog files in order to evaluate mechanical operation. Two dimensional array detector and an ionization chamber were used to measure dose distributions in phantom from Linac. The mechanical movement of jaw was agreed with its expectation and two dimensional dose distributions including beam profiles were in agreement with RTP data approximately. In comparison with RTP calculations the percentage difference of output dose values for 100 MU irradiation was less than 2.9% and measured wedge factor was less than 2.6%. These results are shown that there is no problem in clinical applications of EDW equipped on this linac.

The Study for the Fast Detection of the Stereo Radiation Detector using the Image Processing (영상처리기반 스테레오 감마선 탐지장치의 고속탐지에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1103-1105
    • /
    • 2015
  • Leaked Radioactive source in nuclear power station, radiation related facilities and the aging nuclear power plant for the dismantling must need to detect and remove early to prevent major accidents. In this paper, we implemented a single sensor-based gamma-ray detectors stereo which can provide the distance to the radiation source, a direction and doserate information for fast and efficient decontamination work the radiation source. And we have carried out an algorithm development for high-speed detection of the detection equipment. Two detectors are required for stereo structure for obtaining the distance information of the radioactive source, but we designed the only sensor-based detection device for the weight reduction. We have extracted the region of interest and obtained the distance calculation result and distribution of radiation source in order to minimize a stereo image acquisition time. Detection time of the algorithm showed a shorter time of about 41%.

  • PDF

Development of Monitor Chamber Prototype and Basic Performance Testing (모니터 전리함 시작품 개발과 기초 성능 평가)

  • Lee, Mujin;Lim, Heuijin;Lee, Manwoo;Yi, Jungyu;Rhee, Dong Joo;Kang, Sang Koo;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The monitor chamber is a real time dosimetry device for the measurement and the control of radiation beam intensity of the linac system. The monitor chamber prototype was developed for monitoring and controlling radiation beam from the linac based radiation generator. The thin flexible printed circuit boards were used for electrodes of the two independent plane-parallel ionization chambers to minimize the attenuation of radiation beam. The dosimetric characteristics, saturation and linearity of the measured charge, were experimentally evaluated with the Co-60 gamma rays. The performance of the developed monitor chamber prototype was in an acceptable range and this study shows the possibility of the further development of the chamber with additional functions.

Comparison of the Quality of Clavicle Fracture Three-dimensional Model Printing by Open Source and Commercial use Digital Imaging and Communications in Medicine Stereolithography File Conversion Program (공개용과 상업용 DICOM STL 파일변환 프로그램으로 출력한 삼차원 프린팅 쇄골 골절 모델의 품질비교)

  • Oh, Wang-Kyun;Kim, Hyeong-Gyun
    • Journal of radiological science and technology
    • /
    • v.41 no.1
    • /
    • pp.61-66
    • /
    • 2018
  • The recent 3D printing technology is used in various medical, manufacturing, and education fields and is more efficient in terms of production process, time, and cost than existing production. Especially in fracture surgery, interest and research have been focused on improving accuracy, shortening of operation time and recovery time, and reducing reoperation. However, because of the financial and technical problems of the 3D printer and the file conversion program, the 3D printing is made directly at the hospital, and it is not generally used for diagnosis of fracture and surgical research. In this study, to solve those problems, clavicle CT imaging was switched into Osirix Open Source DICOM Viewer, Stereolithography file conversion programs and commercial Terarecon 3D DICOM Viewer, file conversion programs, and then clavicle fracture model was directly made through 3D printer of fused filament fabrication wire additive processing method, and then the accuracy of the shape was compared and analyzed. Clavicle fracture models printed in two methods were blind-tested on clinicians of general hospitals' orthopedics and radiologic technicians with over 10 years of experiences, and then their analysis opinions of resolution reviews were analyzed. The result showed no difference. The 3D printing model with open source DICOM STL file conversion program used was applicable to clinical, so it is considered useful in precision diagnosis of fracture and operation plans.

Dosimetric Characteristics of Detectors in Measurement of Beam Data for Small Fields of Linear Accelerator (선형가속기의 소조사면에 대한 빔 자료 측정에서 검출기의 선량 특성 분석)

  • Koo, Ki-Lae;Yang, Oh-Nam;Lim, Cheong-Hwan;Choi, Won-Sik;Shin, Seong-Soo;Ahn, Woo-Sang
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.265-273
    • /
    • 2012
  • Aquisition of accurate beam data is very important to calculate a reliable dose distribution of the treatment planning system for small radiation fields in intensity-modulated radiation therapy(IMRT) and stereotactic radiosurgery(SRS). For the measurement of small fields, the choice of a suitable detector is important due to the shape gradient in profile penumbra, the lack of lateral electronic equilibrium, and the effect of effective detector volume. Therefore, this study was to analyze the dosimetric characteristics of various detectors in measurement of beam data for small fields of linear accelerator. 0.01cc and 0.13cc ion chambers (CC01 and CC13) and a stereotactic diode detector(SFD) were used for measurement of small fields. The beam data, including the percent depth dose, output factor, and beam profile were acquired under 6 MV and 15 MV photon beams. Measurements were performed with the field size ranging from $2{\times}2cm^2$ to $5{\times}5cm^2$. For $2{\times}2cm^2$ field size, the differences of the ratios of $PDD_{20}$ and $PDD_{10}$ measured by CC01 and SFD detectors were 1.02% and 0.12% for 6 MV and 15 MV photon beams, respectively. For field sizes larger than $3{\times}3cm^2$, the differences of values of $PDD_{20}/PDD_{10}$ obtained from each detector were 1.15% and 0.71% for 6 MV and 15 MV photon beams, respectively. The output factors obtained from CC01 and SFD for $2{\times}2cm^2$ field size were within 0.5% and 1.5% for 6 MV and 15 MV, respectively. The differences in output factor of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes were within 0.5%. Profile penumbras measured by the SFD, CC01, and CC13 detectors at three depths were average 2.7 mm and 3.5 mm, 3.4 mm and 4.3 mm, and 5.2 mm and 6.1 mm for 6 MV and 15 MV photon beams, respectively. In conclusion, it could be possible to use of the CC01 and SFD detectors for the measurement of percent depth dose and output factor for $2{\times}2cm^2$ field size, and to use of three detectors for $3{\times}3cm^2$ to $5{\times}5cm^2$ field sizes. CC01 and SFD detectors, consider ably smaller than the radiation field, should be used in order to accurately measure the profile penumbra for small field sizes.

A Research regarding the Figuration Comparison of 3D Printing using the Radiation DICOM Images (방사선 DICOM 영상을 이용한 3차원 프린팅 출력물의 형상 비교에 관한 연구)

  • Kim, Hyeong-Gyun;Choi, Jun-Gu;Kim, Gha-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.2
    • /
    • pp.558-565
    • /
    • 2016
  • Recent 3D printing technology has been grafting onto various medical practices. In light of this trend, this research is intended to examine the figuration surface's accuracy of 3D images made by using DICOM images after printing by 3D printing. The medical images were obtained from animal bone objects, while the objects were printed after undergoing STL file conversion for 3D printing purposes. Ultimately, after the 3D figuration, which was obtained by the original animal bones and 3D printing, was scanned by 3D scanner, 3D modeling was merged each other and the differences were compared. The result analysis was conducted by visual figuration comparison, color comparison of modeling's scale value, and numerical figuration comparison. The shape surface was not visually distinguished; the numerical figuration comparison was made from the values measured from the four different points on the X, Y and Z coordinates. The shape surface of the merged modeling was smaller than the original object (the animal bone) by average of -0.49 mm in the 3D printed figuration. However, not all of the shape surface was uniformly reduced in size and the differences was within range of -0.83 mm on the experiment.

Design and Dose Distribution of Docking Applicator for an Intraoperative Radiation Therapy (수술중 방사선치료를 위한 조립형 조사기구의 제작과 선량 분포)

  • Chu, Sung-Sil;Kim, Gwi-Eon;Loh, John-Kyu
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.123-130
    • /
    • 1991
  • A docking intraoperative electron beam applicator system, which is easily docking in the collimator for a linear accelerator after setting a sterilized transparent cone on the tumor bearing area in the operation room, has been designed to optimize dose distribution and to improve the efficiency of radiation treatment method with linear accelerator. This applicator system consisted of collimator holder with shielded metals and docking cone with transparent acrylic cylinder, A number of technical innovations have been used in the design of this system, this dooking cone gives a improving latral dose coverage at therapeutic volume. The position of $90\%$ isodose curve under suface of 8 cm diameter cone was extended $4\sim7$ mm at 12 MeV electron and the isodose measurements beneath the cone wall showed hot spots as great as $106\%$ for acrylic cone. The leakage radiation dose to tissues outside the cone wall was reduced as $3\sim5\%$ of output dose. A comprehensive set of dosimetric characteristics of the intraoperative radiation therapy applicator system is presented.

  • PDF

A Study On Hardware Design for High Speed High Precision Neutron Measurement (고속 고정밀 중성자 측정을 위한 하드웨어 설계에 관한 연구)

  • Jang, Kyeong-Uk;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • In this paper, a hardware design method is proposed for high speed high precision neutron radiation measurements. Our system is fabricated to use a high performance A/D Converter for digital data conversion of high precision and high speed analog signals. Using a neutron sensor, incident neutron radiation particles are detected; a precision microcurrent measurement module is also included: this module allows for more precise and rapid neutron radiation measurement design. The high speed high precision neutron measurement hardware system is composed of the neutron sensor, variable high voltage generator, microcurrent precision measurement component, embedded system, and display screen. The neutron sensor detects neutron radiation using high density polyethylene. The variable high voltage generator functions as a 0 ~ 2KV variable high voltage generator that is robust against heat and noise; this generator allows the neutron sensor to perform normally. The microcurrent precision measurement component employs a high performance A/D Converter to precisely and swiftly measure the high precision high speed microcurrent signal from the neutron sensor and to convert this analog signal into a digital one. The embedded system component performs multiple functions including neutron radiation measurement for high speed high precision neutron measurements, variable high voltage generator control, wired and wireless communications control, and data recording. Experiments using the proposed high speed high precision neutron measurement hardware shows that the hardware exhibits superior performance compared to that of conventional equipment with regard to measurement uncertainty, neutron measurement rate, accuracy, and neutron measurement range.