• Title/Summary/Keyword: 방사선량 저감

Search Result 55, Processing Time 0.023 seconds

Radiation Exposure on Radiation Workers of Nuclear Power Plants in Korea : 2009-2013 (국내 원전 종사자의 방사선량 : 2009-2013)

  • Lim, Young-khi
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • Although the perfomance indicators of the nuclear power plants in Korea show optimal, it requires detailed analysis and discussion centered on the radiation dose. As analysis methods, analysis on the radiation dose of nuclear power plants over the past five years was assessed by comparing the relevant radiation dose of radiation workers and per capita average annual radiation dose of the world's major nuclear power stations was also analyzed. The radiation workers over the annual radiation dose limit of 50 mSv were not. The contrast ratio of the radiation exposure according to the reactor type was the normal operation of PHWR was 6.2% higher than those of the PWR. This shows the radiation work of PHWR during normal driving operation is much more than those of PWR. According to the Performance Indicators of the World Association of Nuclear Operator, the annual radiation dose per unit in 2013 showed 527 man-mSv of Korea is the best country among the major nuclear power generating states, the world average was 725 man-mSv. The annual per capita radiation dose is about 80% less than 1 mSv of the public dose limit and also the average per capita dose showed a very low level as 0.82 mSv. Workers in related organizations showed 1.07 mSv, the non-destructive inspection agency workers showed 3.87 mSv. The remarkable results were due to radiation reduced program such as development of radiation shielding and radiation protection. In conclusion, the radiation exposured dose of nuclear power plants workers in Korea showed a trend which is ideally reduced. But more are expected to be difficul and the psychological insecurity against the operation of the nuclear power plants is existed to the residents near the nuclear power plants. So the radiation dose reduction policy and radiation dose follow up study of nuclear power plants will be continously excuted.

Effects of Dose Reduction Fiber Shielding Cloth on Scattering Rays in Off-target Site during Angiography (선량저감섬유(Dose Reduction Fiber) 차폐포의 혈관조영술(Angiography) 시술 시 비 시술 부위의 산란선 차폐 효과)

  • Kim, Yong-Jin;Han, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.393-400
    • /
    • 2020
  • Unlike conventional radiographic examinations, angiointerventional procedures have a high risk of radiation exposure to patients or operators due to prolonged radiation exposure time. This study was undertaken to examine effects of reducing the radiation risk by applying dose reduction fiber (DRF) shielding cloth during angiography. To investigate the properties of DRF shielding cloth, we measured the scattered radiation below and above a human phantom using a glass dosimeter, at site distances 10 cm away from the irradiated field. The results obtained reveal a 15 ~ 31% reduction of scattered radiation in the irradiation field, and 53 ~ 70% reduced radiation measured after phantom transmission. Taken together, our data indicate that application of DRF shielding cloth for radiation reduction at non-procedural sites during interventional procedure results in reduction of scattered doses to patients and operators, without affecting the medical examinations. We propose the use of DRF shielding during angiointerventional procedures, in order to reduce the risk of radiation exposure of patients and operators.

Minimized Radiation Dose of Patients Receiving High Dose Radioiodine(I-131) Therapy (고용량 방사성옥소(I-131) 치료환자의 피폭선량 저감화 연구)

  • Lee, Gui-Won
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.435-442
    • /
    • 2007
  • The number of thyroid diseases treated with radioiodine(I-131) is increasing steadily. The sharp increase in patients who require high dose radioiodine therapy greatly increased the need for new therapy rooms. Accordingly, interest in radiation exposure is rising as well, and is a major psychological stress factor for the patient and those who come in close contact with the patient. This study aimed to minimize the radiation exposure on discharge. Based on various previous reports, the decision for discharge should be individualized depending on many factors related to the patient's living or working environment. Educating patients repeatedly on the importance of sufficient oral hydration, while the adequate amount was relative to the patient's individual condition, greatly lowered the detected radiation measurement within the same admission period. In some cases, the period of admission could be abbreviated.

  • PDF

Measuring external Radiation dose Ratio by Traits of Patients during Positron Emission Tomography(PET) (양전자단층촬영(PET)시 환자의 특성에 따른 외부 방사선량률 측정)

  • Cho, Yong-Gwi;Kim, Sung-Chul;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.860-868
    • /
    • 2013
  • The purpose of this study is to ensure safety by measuring External radiation dose ratio (ERDR) by traits of patients in many ways after administering radiopharmaceutical($^{18}F$-FDG) for PET Torso scan, and to decrease ERDR of those to RI technologist, caretakers, and those who frequently exposed to radiation by arousing attention to radiation dose. Radiopharmaceutical was administered to 80 patients who conducted PET Torso from January to June, 2013. Radiation dose emitted from the patients was measured according to body shape(BMI), water hydration, height, amount of radiation administration. From the moment immediately after the radiopharmaceutical was administered, ERDR was measured by personal traits of patients. The radiation dose increased in proportion to the administered amount of the radiopharmaceutical, and there was no significant difference depending on the body shape of the patients. When water was supplied and the height was normal, the radiation dose was lower compared with the cases where water was not supplied and height was not normal. There is a need for making efforts to minimize the working time through sufficient education and mock training before those who RI technologist with sources of radiation for complying the radiation safety management rule. And they should minimize the ERDR by wearing a protective gear.