• Title/Summary/Keyword: 방사능붕괴

검색결과 51건 처리시간 0.027초

원전주변 환경시료의 766 keV 감마선에너지 피크에 대한 해석 (Analysis of 766 keV Gamma Peak from NPP Environmental Samples)

  • 김완;이해영;양희선;박해수;김봉국;박환배;김홍주;이상훈
    • Journal of Radiation Protection and Research
    • /
    • 제34권4호
    • /
    • pp.190-194
    • /
    • 2009
  • 울진원자력발전소 주변의 환경시료 해조류에서 검출된 766 keV 감마선에너지 피크를 여러 연구기관에서 $^{95}Nb$ 핵종에서 방출된 것으로 해석하고 있다. 그러나 원전의 액체폐기물 처리설비의 장치개선으로 $^{95}Nb$ 배출량이 현격히 감소하였음에도 불구하고 지속적으로 환경시료에서 $^{95}Nb$ 핵종이 검출되고 있는 현상에 대해서 보다 더 정밀한 기술적인 검토가 필요하였다. 이에 측정 스펙트럼을 정밀 분석한 결과, 766 keV 감마선에너지 피크와 $^{234}Th-^{234}mPa$ 붕괴 계열의 다른 감마선에너지 피크(63, 92 및 1001 keV)들이 동시에 같이 검출되고 있으며, 이들 4종의 감마선에너지 피크 계수율의 시간에 대한 변화로부터 계산된 반감기가 $^{234}Th-^{234}mPa$ 붕괴 계열의 방사평형시 방사능반감기 24.1 일과 매우 비슷한 값을 나타내었다. 또한 766 keV 와 1001 keV 피크의 상대적인 계수율의 비가 $^{234}mPa$의 감마선방출율의 상대적인 비 0.35와 매우 비슷한 값을 나타내었다. 따라서 이러한 점에서 지금까지 $^{95}Nb$ 핵종에서 방출된 것으로 판단했던 766 keV 감마선에너지 피크는 자연방사성핵종인 $^{234}mPa$ 핵종에서 방출된 것으로 판단된다.

GEANT4를 이용한 $^{99m}Tc$ Generator 안전성 시뮬레이션 ([ $^{99m}Tc$ ] Generator Safety Simulation Based on GEANT4)

  • 강상구;한동현;김종일
    • 한국의학물리학회지:의학물리
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 테크니슘$(^{99m}Tc)$은 현재 핵의학 분야에서 진단용 방사선원으로 가장 널리 쓰이고 있는 방사성 동위원소 중 하나이다. 일반적으로 테크니슘은 $^{99m}Tc$ Generator라 불리는 장치 안에서 모핵종인 $^{99}Mo$의 붕괴를 통해 생산되는데, $^{99}Mo$$^{99m}Tc$에서 비교적 높은 방사선을 방출하기 때문에 이를 차폐하기 위하여 주로 납으로 제작되어 있다. 본 논문에서는 국내에서 비교적 사용 빈도가 높고 교정 방사능이 500 mCi인 일본 제품을 대상으로, 최대 방사능량 적제조건에서 차폐용기 표면으로부터 10 cm, 100 cm에서 각각 2.0 mSv/h, 0.02 mSv/h를 초과하지 않아야 한다는 국내 법적 제한치를 만족시키는지 여부를 GEANT4를 이용하여 시뮬레이션하였다. 계산 결과 용기 밖으로 방출되는 방사선량이 법적 기준치를 초과하지 않는 것으로 나타났다.

  • PDF

소동물 PET 영상특성추출법 정확성 검증을 위한 영상명암도 보정 (Intensity correction for accuracy validation of feature extraction methods)

  • 김누리;송수민;박혜진;김경민;김명희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.679-682
    • /
    • 2007
  • 살아있는(in-vivo)실험체에서 여러 차례 획득된 영상의 관심영역 특성을 측정, 분석하기 위한 영상처리기법의 정확성은 동물을 희생시켜(in-vitro) 촬영한 영상과의 정량적 비교분석을 통해 검증할 수 있다. 하지만 육안검사에 의존한 기존 분석방법은 객관성이 떨어지는 단점이 있다. 따라서 본 논문에서는 in-vivo영상인 PET 영상과, in-vitro영상인 Autoradiography 영상에서 관심영역 특성을 객관적, 정량적으로 비교하는 방법을 제안한다. 종양을 심은 누드마우스에 방사성 동위원소를 표지하여 획득한 이 두 영상에서 종양 조직 성장 지표가 되는 체적과 조직의 활성도를 나타내는 방사능섭취량(SUV)을 각각 측정하고 이를 비교하였다. 또한 두 영상획득의 시간차에 의해 방사성동위원소가 붕괴되어 영상 전체의 명암도가 감소하게 되므로 시간에 반비례하게 변하는 방사성동위원소의 양을 고려하여 영상명암도를 보정하였다.

  • PDF

다단계 연속후처리를 포함하는 핵주기공정의 핵종농도 동적분포 해석코드 계발(I) -정상 평형상태 해석모델- (Development of a Computer Code for Analyzing Time-dependent Nuclides Concentrations in the Multi-stage Continuous HLW Processing System (I) - Equilibrium Steady State -)

  • 오세기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 A
    • /
    • pp.262-264
    • /
    • 2000
  • 원자로 내에서 연소 중인 핵연료나 저장 또는 재처리 중인 사용후핵연료의 성분으로서 시설의 공정설계, 안전성분석 및 차폐설계에 중요한 입력자료가 되는 핵분열생성물질, 방사화생성물 및 악티나이드의 핵종 농도와 이에 대응하는 방사능 강도의 기기 별 시간변 화율을 해석할 수 있는 코드 개발할 목적으로 MULTISAMS 정상 평형상태 모델을 구현하였다. MULTISAMS 코드의 반응공정 모델은 서로 연결되어 있으며 내부에 방사성물질의 혼합유체가 순환하는 세 종류의 반응기(원자로, 열교환기 및 화학반응기) 계통에서 자연적 또는 설계에 의해 일어나는 현상으로서; 반응기 간의 물질 흐름; 각 반응기 내에서 방사성 붕괴, 변환, 이동과 중성자 흡수 및 핵분열; 외부로부터 특정 핵종의 유입혹은 유출을 고려한 시간종속 핵종농도보존방정식 이론에 근거한다. 코드의 유용성 및 신뢰성을 검증하기 위해 현재 개념설계가 진행 중인 AMBIDEXTER원자력 에너지시스템을 대상으로 ORIGEN2 계산과 비교하였다. 두 코드 간의 입력조건과 배경이론차이점 때문에 절대적 비교가 불가능하므로 단순이론의 중간매개코드로서 SAMS를 이용한 2단계 비교방법을 따랐다. 결론은 MULTISAMS는 ORIGEN2 계산의 수렴치와 근사하게 일치하면서 ORIGEN2 가 다룰 수 없는 핵주기 연속후처리공정의 정상가동 시 핵종 평형농도를 기기 별로 계산할 수 있다는 장점을 확인하였다.

  • PDF

단 반감기 핵종을 이용한 PET 검사 시 영상 획득 시간에 따른 정량성 평가 (The Evaluation of Difference according to Image Scan Duration in PET Scan using Short Half-Lived Radionuclide)

  • 홍건철;차은선;곽인석;이혁;박훈;최춘기;석재동
    • 핵의학기술
    • /
    • 제16권1호
    • /
    • pp.102-107
    • /
    • 2012
  • 단 반감기 핵종을 이용한 PET검사는 방사성동위원소의 빠른 물리적 붕괴로 인하여 영상 획득을 위한 계수검출이 제한적이다. 이러한 이유로 비교적 낮은 감도의 검사에서는 보다 정확한 정량적 평가를 위하여 긴 시간동안 영상 획득을 적용하기도 한다. 본 연구에서는 $^{11}C$$^{18}F$를 이용한 PET 검사 시 영상 획득 시간에 따른 차이를 평가하여 합리적인 영상 획득 시간에 관하여 알아보고자 한다. 1994 NEMA Phantom에 $^{11}C$$30.08{\pm}4.22MBq$, $^{18}F$$40.08{\pm}8.29MBq$을 증류수에 희석하여 채운 후 $^{11}C$은 동적영상 1분씩 20회, 정적 영상 20분, $^{18}F$은 동적영상 2분30초씩 20회, 정적영상 50분을 획득하였다. 모든 데이터는 동일한 재구성법을 적용하였으며, 시간의 경과에 따른 붕괴보정을 적용하였다. 방출영상에 관심영역을 설정하고 최대 방사능 농도값(kBq/mL)을 비교하였으며, 각각의 동적영상을 영상 획득 시간의 증가에 따라 1개씩 증가시켜 영상 합산(Image summation) 후 영상의 관심 영역 내에서의 최대 방사능 농도값(kBq/mL)을 평가하였다. $^{11}C$ 동적영상의 시간 경과에 따른 최대 방사능 농도값은 $3.85{\pm}0.45{\sim}5.15{\pm}0.50kBq/mL$, 정적영상은 $2.15{\pm}0.26kBq/mL$였다. $^{18}F$ 동적영상은 $9.09{\pm}0.42{\sim}9.48{\pm}0.31kBq/mL$, 정적영상은 $7.24{\pm}0.14kBq/mL$였다. $^{11}C$의 동적영상 합산에서 영상 획득 시간의 합이 5, 10, 15, 20분으로 증가할수록 $2.47{\pm}0.4$, $2.22{\pm}0.37$, $2.08{\pm}0.42$, $1.95{\pm}0.55kBq/mL$으로 감소하였으며, $^{18}F$의 경우 합산된 영상 획득 시간의 합이 12분 30초, 25분, 37분 30초, 50분으로 증가할수록 $7.89{\pm}0.27$, $7.61{\pm}0.23$, $7.36{\pm}0.21$, $7.31{\pm}0.23kBq/mL$으로 감소하였다. 영상의 질을 평가 하는 SNR에서는 $^{11}C$$^{18}F$ 모두 동적영상획득 방법에서는 주사 후 시간이 흐를수록 SNR가 저하 되었으나, 영상 합산획득 방법에서는 합산 횟수가 증가 할수록 SNR가 향상 되는 것을 알 수 있었다. 동적영상에서 시간 경과에 따른 최대 방사능 농도값은 $^{11}C$$^{18}F$에서 증가하였고, 동적영상 합산의 경우는 합산수가 증가함에 따라 최대 방사능 농도값은 $^{11}C$$^{18}F$ 감소함을 보였다. $^{18}F$을 이용할 경우에는 시간 경과에 따른 정량평가의 오차를 크게 고려하지 않아도 될 것으로 사료되고, $^{11}C$를 이용한 PET 검사는 시간경과에 따른 감쇠 보정의 오차를 감안하여 추가의 감쇠 보정법을 적용하거나 30%정도의 오차를 적용하여 정적영상 획득시간을 반감기의 25% 이내인 5분 내외로 설정해야 할 것이다.

  • PDF

감마분광분석을 이용한 환경 중 방사성요오드(131I)의 측정 불확도에 관한 사례 연구 (A Case Study about Counting Uncertainty of Radioactive Iodine (131I) in Public Waters by Using Gamma Spectrometry)

  • 조윤해;설빛나;민경옥;김완석;이준배;이수형
    • 대한환경공학회지
    • /
    • 제38권1호
    • /
    • pp.42-46
    • /
    • 2016
  • 환경에 존재하는 인공방사성핵종 중 방사성요오드($^{131}I$)는 주로 갑상선질환의 치료에 사용되며 환자의 배출과정을 통해 체외로 방출된다. 붕괴가 채 끝나지 않은 $^{131}I$는 환경으로 방출되어 공공수역에서 검출될 수 있다. 본 연구는 공공수역에서 검출된 $^{131}I$ 방사능 결과의 정확도 및 신뢰도에 영향을 미치는 불확도 중 계측 과정에서 발생하는 불확도에 대하여 금강수계의 실제 사례를 조사하였다. 시료는 금강권역 삽교천 수계의 하천수 및 그 상류의 하수처리장 방류수를 대상으로 하였으며, 시료량에 따른 불확도를 확인하기 위하여 각 지점의 시료를 1, 10, 20 L로 채수하였다. 채취한 시료는 시료량에 따라 전 처리를 거친 후 1 L 마리넬리 비커에 충전하여 HPGe (High Purity Germanium) 감마선 검출기를 이용하여 10,000초 단위로 계측 분석하여 계측시간 및 방사능에 따른 측정불확도를 비교하였다. 각 지점의 방사능 농도는 0.03~1.8 Bq/L로, 채취시점에 따라 차이가 있는 것으로 나타났다. $^{131}I$의 방사능 농도가 0.3 Bq/L 수준인 경우 시료량이 1 L이면 약 80,000초 계측 시까지 핵종의 존재여부를 판단하지 못하는 경우가 발생하였으나, 같은 조건에서 시료량을 증가시켜 계측한 경우 10,000초 이상의 계측시간부터 불확도 10% 범위에 포함되는 것으로 나타났다. $^{131}I$의 짧은 반감기를 고려하여 즉시 계측이 가능한 1 L 생시료 계측 방법을 사용할 수 있으나, 불확도 수준과 전처리 및 계측에 소요되는 시간을 비교하였을 때, 10 L 시료의 계측을 통해 높은 신뢰도의 측정 결과를 얻을 수 있는 합리적인 방법이라고 판단되었다.

Radium-223 Dichloride의 외부 방사선량의 평가 (The Evaluation of External Radiation Exposure dose rate for Radium-223 Dichloride)

  • 조성욱;윤석환;승종민;김태엽;임정진;김진의
    • 핵의학기술
    • /
    • 제20권1호
    • /
    • pp.28-31
    • /
    • 2016
  • 전립선암은 세계적으로 남성에게 발생하는 가장 흔한 암이며, 암 관련 이환 및 사망의 주요 원인 중 하나이다. 전립선 암세포는 안드로겐에 의해 자극되며 안드로겐 수용체에 결합하여 활성화된다. 안드로겐 수용체는 전사인자로 작용하며 세포주기, 증식 및 분화를 조절한다. 안드로겐 수용체 신호 차단은 전립선암 치료의 특징이다. 전립선암에서 통증은 빈번하게 일어나는 관련 증상으로 환자의 삶의 질 악화의 주요 원인 중 하나이다. 주사용 $^{223}Ra-Dichloride$는 28 Mev 알파 방사선을 방출하여 골 전이가 있는 거세저항성 전립선암(Castration-Resistant Prostate Cancer)의 치료에 이용되고 있다. $^{223}Ra$은 체내 반감기가 11.4 일, 100 마이크로미터 이하 범위의 높은 선 에너지 전달(LET) 알파선을 방출하므로 매우 국소적인 방사선 영역을 생성시키는데 사용할 수 있다. 골격 전이와 같은 표적조직에 알파선을 위치하게 되면 베타선보다 더 국소적 용적으로 방사선을 전달하여 주위의 정상조직에 대한 노출을 줄인다. 하지만 $^{223}Ra-Dichloride$는 알파선 이외에 붕괴 과정에서 3.6%의 베타선과 1.1%의 감마선 (80, 156, 270 keV)을 방출한다. 본 연구는 $^{223}Ra-Dichloride$ 치료 시 사용되는 방사능양 3.5 MBq과 $^{99m}Tc-MDP$를 사용하여 Bone scan 검사 시 사용되는 방사능양 740 MBq을 사용하여 감마선에 대한 외부 방사선량을 평가해보고자 하였다. 최대 외부 방사선량은 $D({\infty})=34.6{\tau}Q_0Tp(0.25)$(${\tau}$:감마상수, $Q_0$:초기방사능양, Tp:물리적 반감기) 식을 이용하여 산출하였으며, 실제로 vial에서 방출되는 감마선을 1m의 거리에서 survey meter를 이용하여 15회 외부 방사선량률을 측정하였다. Health physics(2012)에서 제공하는 $^{223}Ra-Dichloride$$^{99m}Tc-MDP$의 1m 거리에서의 감마상수의 값은 각각 0.0469, 0.0215, 실제로 사용되는 방사능양 3.5 MBq, 740 MBq, 반감기 11.4일, 6시간을 기준으로 산출된 외부 방사선량은 $^{223}Ra-Dichloride$$16{\mu}Sy$, $^{99m}Tc-MDP$$34{\mu}Sy$의 값을 보였다. 실제로 vial에서 1 m 거리에서 방출되는 외부 방사선량율은 평균 $^{223}Ra-Dichloride$${\mu}Sy/h$, $^{99m}Tc-MDP$$18{\mu}Sy/h$ 값이 측정값을 보였다. 감마상수 값은 $^{223}Ra-Dichloride$$^{99m}Tc-MDP$에 비해 높은 값을 나타내지만 실제로 사용되는 방사능의 양을 고려한 최대 외부 방사선량은 $^{223}Ra-Dichloride$$^{99m}Tc-MDP$보다 낮은 최대 외부 방사선량 값이 산출되었으며, 실제로 측정한 외부 방사선량율도 작은 값을 보여 $^{223}Ra-Dichloride$을 이용한 치료시 감마선에 대한 외부 방사선량은 매우 작음을 알 수 있었다. $^{223}Ra-Dichloride$은 골 전이가 있는 거세저항성 전립선암(Castration-Resistant Prostate Cancer) 환자들에게 유용한 치료제라고 사료된다.

  • PDF

방사성 요오드 치료환자의 환의 및 시트에 대한 재사용주기 평가 (The Evaluation on Reuse Period of Patient's Clothes and Sheet After Radioiodine Therapy)

  • 김영선;서명덕;이완규;김기준;송재범
    • 핵의학기술
    • /
    • 제16권2호
    • /
    • pp.12-17
    • /
    • 2012
  • 방사성 요오드 치료병실에서 나온 환의 및 시트는 본디 방사성폐기물로서 관련 규정에 따라 일반 쓰레기와 동일하게 처리해야 하지만 사정상 일정기간 보관하여 방사능을 감쇄시킨 후 재사용하게 된다. 통상 최소보관기간 산출에 표면오염도(Bq/$m^2$)를 기반으로 하는 반출기준을 적용하고 있다. 하지만 방사선측정기를 이용하여 단위 면적당 총방사능량을 구하는 방법은 측정방법에 따라 편차와 불확실성이 상당히 커진다. 본 연구에서는 '방사성폐기물 자체처분 등에 관한 규정'에서 제시하고 있는 핵종 농도(Bq/g)를 Dose Calibrator를 이용하여 직접 측정하여 최소보관기간을 구함으로써, 환의 및 시트의 정확한 재사용 주기를 산출하고자 한다. 한편 반출기준으로 산출한 최소보관기간과 비교하여 그 차이를 살펴보았다. 본원의 방사성 요오드 치료병실에서 2011년 7월부터 2012년 3월까지 I-131을 3.7 GBq (100 mCi) 이상을 사용하여 방사성 요오드 치료를 시행한 환자 31명이 사용한 환의와 시트의 방사선 오염도를 측정하여 최소보관기간을 산출하였다. 최소보관기간은 핵종 농도를 측정하여 '방사성폐기물 자체처분 등에 관한 규정'에 따라 100 Bq/g이 되는 시점과 표면오염도를 측정하여 반출기준에 따라 허용표면오염도의 1/10, 즉 4 kBq/$m^2$되는 시점을 붕괴식에 대입하여 산출하였다. 반출기준으로 산출한 최소보관기간은 침대/담요시트는 14.2일, 베개시트는 4.6일, 환의(상(上))은 63일, 환의(하(下))는 78일 이었으며, 자체처분 기준에 따른 최소보관기간은 베개시트는 18.1일, 환의(상(上))은 43일, 환의(하(下))는 62일로 산출되었다. 표면오염도와 핵종 농도의 상관관계를 분석해 본 결과 베개시트와 환의(상(上))는 상관관계가 높게 나타났으나, 환의(하)는 낮게 나타났다. 이는 베개시트와 환의는 방사성오염이 부분에 국한 되어 측정값이 일정한 반면, 환의(하(下))는 소변에 의한 방사성오염이 여러 부분에 산재되어 있어 방사선측정기의 측정값이 상대적으로 낮게 측정된 결과로 생각 된다. 실질적으로 방사성 오염도를 측정한 결과 반출기준과 자체처분 기준을 상당량 초과하는 방사능이 존재하는 것을 확인할 수 있었다. 환의와 시트의 최소보관기간 산출에는 핵종 농도를 기준으로 하는 자체처분 기준을 적용하는 것이 더 적합하다고 할 수 있다. 방사능에 오염된 환의 및 시트는 최소 60일 정도는 보관해야 성급한 재사용에 따른 불필요한 방사선피폭 및 오염 확산을 방지할 수 있을 것으로 생각된다.

  • PDF

원자력 비상시 가축의 사료로 이용을 위한 사료내 방사성 핵종농도 결정에 대한 연구 (A Study on the Determination of Radionuclide Concentrations in Animal Feedstuffs for Use Following a Nuclear Emergency)

  • 황원태;김은한;서경석;최영길;한문희
    • Journal of Radiation Protection and Research
    • /
    • 제26권2호
    • /
    • pp.87-91
    • /
    • 2001
  • 비용-편익 분석법에 근거한 동물성 식품에 대한 최적 유도개입준위를 통해 가축사료로 이용을 위한 사료내 방사성 핵종농도를 도출하였다. 가축사료로 이용을 위한 사료내 방사성물질의 농도는 식품, 핵종, 가축으로의 공급기간 (오염사료의 공급 시작시점부터 제품 생산까지 기간) 등에 따라 뚜렷이 다르게 나타났다. 장반감기 핵종 ($^{l37}Cs,\;^{90}Sr$)의 경우 사료 공급기간의 증가에 따라 가축의 체내 방사성물질의 축적으로 보다 낮은 농도를 갖는 사료를 공급하여야 하나 단반감기 핵종 ($^{131}I$)의 경우에는 방사능붕괴 등으로 보다 놀은 농도를 갖는 사료 공급이 가능하였다. 가축으로 공급을 위한 사료내 $^{137}Cs$ 농도는 $^{90}Sr$ 농도보다 낮았는데, 이는 주로 $^{137}Cs$의 보다 높은 사료-식품 전이계수에 기인한다.

  • PDF

화강암 잔류 토양의 토양 가스 중 라돈의 장기적 변화 특성 (Long-term Variation of Radon in Granitic Residual Soil at Mt. Guemjeong in Busan, Korea)

  • 문기훈;김진섭;안정근;김현철;이효민
    • 암석학회지
    • /
    • 제18권4호
    • /
    • pp.279-291
    • /
    • 2009
  • 라돈은 원자번호 86의 화학원소로서 무색, 무취, 무미의 천연에서 존재하는 방사성 불활성기체이며 암석 및 토양 내 라듐의 방사능붕괴에 의해 생성되어, 주로 토양의 공극 중 가스 상태로 분포된다. 본 연구에서는 부산시 금정구의 금정산에 분포하는 화강암 잔류 토양에서 라돈 농도의 장기적 변화 특성과 이러한 변화에 영향을 미칠 수 있는 요인들로서 대기 온도, 강수, 토양 온 습도에 대한 영향을 분석하였다. 챔버와 튜브를 토양 내 설치하는 두 종류의 In-situ 모니터링 방식으로 토양 가스 내 라돈 농도를 정기적으로 측정하고, 그 효율성을 검토하였다. 토양 가스 중 라돈의 농도는 여름철에 가장 높게 측정되며, 겨울철에 가장 낮게 측정된다. 토양 내부 온도와 대기 온도의 변화가 이러한 라돈의 장기적 변화에 가장 크게 영향을 미치며, 양의 상관관계를 보인다. 대기 중 온도와 토양 내 온도 차에 의한 대기와 토양 내 공기의 순환이 주된 변화 요인으로 분석되었다. 그러나 다른 요인들(강수, 토양 습도)은 라돈 농도의 장기적 변화에 미치는 영향은 상대적으로 낮게 나타났다.