• Title/Summary/Keyword: 방사기반함수

Search Result 83, Processing Time 0.021 seconds

Design of ASM-based Face Recognition System Using (2D)2 Hybird Preprocessing Algorithm (ASM기반 (2D)2 하이브리드 전처리 알고리즘을 이용한 얼굴인식 시스템 설계)

  • Kim, Hyun-Ki;Jin, Yong-Tak;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.173-178
    • /
    • 2014
  • In this study, we introduce ASM-based face recognition classifier and its design methodology with the aid of 2-dimensional 2-directional hybird preprocessing algorithm. Since the image of face recognition is easily affected by external environments, ASM(active shape model) as image preprocessing algorithm is used to resolve such problem. In particular, ASM is used widely for the purpose of feature extraction for human face. After extracting face image area by using ASM, the dimensionality of the extracted face image data is reduced by using $(2D)^2$hybrid preprocessing algorithm based on LDA and PCA. Face image data through preprocessing algorithm is used as input data for the design of the proposed polynomials based radial basis function neural network. Unlike as the case in existing neural networks, the proposed pattern classifier has the characteristics of a robust neural network and it is also superior from the view point of predictive ability as well as ability to resolve the problem of multi-dimensionality. The essential design parameters (the number of row eigenvectors, column eigenvectors, and clusters, and fuzzification coefficient) of the classifier are optimized by means of ABC(artificial bee colony) algorithm. The performance of the proposed classifier is quantified through yale and AT&T dataset widely used in the face recognition.

Development of Automatic Sorting System for Black Plastics Using Laser Induced Breakdown Spectroscopy (LIBS) (LIBS를 이용한 흑색 플라스틱의 자동선별 시스템 개발)

  • Park, Eun Kyu;Jung, Bam Bit;Choi, Woo Zin;Oh, Sung Kwun
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.73-83
    • /
    • 2017
  • Used small household appliances have a wide variety of product types and component materials, and contain high percentage of black plastics. However, they are not being recycled efficiently as conventional sensors such as near-infrared ray (NIR), etc. are not able to detect black plastic by types. In the present study, an automatic sorting system was developed based on laser-induced breakdown spectroscopy (LIBS) to promote the recycling of waste plastics. The system we developed mainly consists of sample feeder, automatic position recognition system, LIBS device, separator and control unit. By applying laser pulse on the target sample, characteristic spectral data can be obtained and analyzed by using CCD detectors. The obtained data was then treated by using a classifier, which was developed based on artificial intelligent algorithm. The separation tests on waste plastics also were carried out by using a lab-scale automatic sorting system and the test results will be discussed. The classification rate of the radial basis neural network (RBFNNs) classifier developed in this study was about > 97%. The recognition rate of the black plastic by types with the automatic sorting system was more than 94.0% and the sorting efficiency was more than 80.0%. Automatic sorting system based on LIBS technology is in its infant stage and it has a high potential for utilization in and outside Korea due to its excellent economic efficiency.

A Performance Study of Gaussian Radial Basis Function Model for the Monk's Problems (Monk's Problem에 관한 가우시안 RBF 모델의 성능 고찰)

  • Shin, Mi-Young;Park, Joon-Goo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.34-42
    • /
    • 2006
  • As art analytic method to uncover interesting patterns hidden under a large volume of data, data mining research has been actively done so far in various fields. However, current state-of-the-arts in data mining research have several challenging problems such as being too ad-hoc. The existing techniques are mostly the ones designed for individual problems, so there is no unifying theory applicable for more general data mining problems. In this paper, we address the problem of classification, which is one of significant data mining tasks. Specifically, our objective is to evaluate radial basis function (RBF) model for classification tasks and investigate its usefulness. For evaluation, we analyze the popular Monk's problems which are well-known datasets in data mining research. First, we develop RBF models by using the representational capacity based learning algorithm, and then perform a comparative assessment of the results with other models generated by the existing techniques. Through a variety of experiments, it is empirically shown that the RBF model has not only the superior performance on the Monk's problems but also its modeling process can be controlled in a systematic way, so the RBF model with RC-based algorithm might be a good candidate to handle the current ad-hoc problem.