• Title/Summary/Keyword: 방류구

Search Result 115, Processing Time 0.018 seconds

Spatial Characteristics of Pollutant Concentrations in the Streams of Shihwa Lake (시화호 유입하천의 수질오염물질 농도에 관한 연구)

  • Jang, Jeong-Ik;Han, Ihn-Sup;Kim, Kyung-Tae;Ra, Kong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.289-299
    • /
    • 2011
  • We studied the characteristics of pollutant concentrations in 9 streams that flow into Shihwa Lake in order to provide the scientific data for effective implementation of total pollution loads management system (TPLMS) of the Lake. Suspended solid (SS), chemical oxygen demand (COD), dissolved nutrients ($NO_2$, $NO_3$, $NH_4$, $PO_4$ and $SiO_2$), total phosphorus (TP) and total nitrogen (TN) in stream water from industrial complexes, urban and agricultural regions were determined. Pollutant concentrations in December were higher than that in other sampling periods. COD concentration from industrial complex region with average of 12.6 mg/L was 2 times higher those from urban region (6.6 mg/L) and agricultural region (5.9 mg/L). TP concentration from industrial region also showed higher concentration than other regions. TN concentration in stream water was 5.89 mg/L for industrial region, 3.02 mg/L for urban region and 5.27 mg/L for agricultural region, respectively, suggesting inflow of TN due to fertilizer usage in agricultural field. Relative percentage of nitrogen compounds in TN follows the sequence: $NH_4$ (35.1%) > $NO_2$ (20.0%) > DON (22.8%) > PON (8.9%) > $NO_2$ (3.2%). Concentrations of dissolved nutrients, TP and TN in stream water were 3.2~37.2 times higher than that in Shihwa Lake seawater, therefore large amount of pollutants may be directly entered into Shihwa Lake without any treatment. For Gunja stream of industrial region, pollutants at midstream showed relatively higher concentration compared to upstream and downstream. It is necessary to manage the illegal discharging of sewage and waste water. Our results provide valuable informations on the estimation and reduction of total pollutant loads in the process of establishing adequately strategic and implemental plan of Shihwa Lake TPLMS.

The Effect of Water Conveyance of Boryeong Dam on Structural Changes of Benthic Macroinvertebrates Community (보령댐 도수가 저서성 대형무척추동물 군집구조 변화에 미치는 영향)

  • An, Chae-Hui;Han, Jung-Soo;Choi, Jun-Kil;Lee, Hwang-Goo
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.4
    • /
    • pp.381-391
    • /
    • 2018
  • The purpose of this study is to investigate the influence of artificial disturbances occurring during water conveyance frequency on benthic macro-invertebrate by comparing and analyzing data before and after the construction of Boryeong dam in Boryeong-si, Chungcheongnam-do. We conducted the survey eight times in four points from April 2016 to September 2017. A total of 13,447 individuals from 125 species, 70 families, 19 orders, 7 classes, and 4 phyla were collected. The result of the community analysis showed that the dominant index was 0.55 (${\pm}0.07$) to 0.47 (${\pm}0.08$), diversity index was 2.06 (${\pm}0.26$) to 2.23 (${\pm}0.28$), evenness index was 0.69 (${\pm}0.05$) to 0.70 (${\pm}0.04$), and richness index was 3.43 (${\pm}0.72$) to 4.03 (${\pm}0.91$). After conveyance, the dominance decreased while the diversity, evenness, and richness increased. The result of the functional group analysis showed the portion of scrapers, filtering-collectors increased while that of shredders, gathering-collectors decreased in the functional feeding group and that the proportion of climbers and clingers increased while that of burrowers and sprawlers decreased in the habitat orientation group. The result of analysis of community stability showed that St. 1 and St. 2 decreased resistance and resilience after conveyance and new species appeared in the III characteristics group while St. 3 and St. 4 did not show much difference. The result of multidimensional scaling analysis showed that the variation of similarity was the highest at St. 1 after conveyance, and the variation of similarity at St. 4 was the lowest.

An Ecological Comparison of Benthic Macroinvertebrate Community in Downstream Region of Large Dams (대형댐 하류지역 저서성 대형무척추동물 군집의 생태학적 비교)

  • Kim, Jae-Sung;Lee, Hwang-Goo;Choi, Jun-Kil
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.1
    • /
    • pp.52-63
    • /
    • 2013
  • Benthic macroinvertebrates were investigated in Yongdam-dam and Hapcheon-dam resions from June to October 2011, Korea. Yongdam-dam and Hapcheon-dam are geographically contiguous, but they are classified as other water system. Experiment site(YE-1, 2, 3; HE-1, 2, 3) which is thought to be affected by dam, control site(YC-1, 2; HC-1, 2) which is thought not to be affected by dam were selected. Species composition, macroinvertebrate communities, composition of the functional feeding groups, habitat orientied groups and community stability were assessed Yongdam-dam and Hapcheon-dam regions. Ten sites were selected for quantitative(Surber sampler $30cm{\times}30cm$) of benthic macroinvertebrates. As a results, a total of 6,369 individuals including 69 species, 33 families, 12 orders, 6 classes and 4 phyla were recognized in Yongdam-dam region. Also, a total of 5,728 individuals including 81 species, 44 families, 13 orders, 5 classes and 4 phyla were recognized in Hapcheon-dam region. Dominance index was 0.27~0.50(mean${\pm}$SD $0.38{\pm}0.09$), diversity index was 2.22~2.97($2.67{\pm}0.29$), evenness index was 0.63~0.76($0.72{\pm}0.06$) and richness index was 4.43~7.06($5.69{\pm}0.99$) in Yongdam-dam region. Dominance index was 0.40~0.81($0.59{\pm}0.18$), diversity index was 1.40~2.39($2.00{\pm}0.43$), evenness index was 0.38~0.68($0.56{\pm}0.13$) and richness index was 4.04~5.80($4.95{\pm}0.70$) in Hapcheon-dam region. In the functional feeding groups, filtering-collectors and gathering-collectors were the highest in the whole sites. In the habitat orientied groups, burrowers, clingers and swimmers were considerably occupied in all sites. As a result of community stability analysis, experiment sites has been identified much as species high resistance and resilience to environmental changes in Yongdam-dam. Control sites has been identified much as species low resistance and resilience to environmental changes in Hapcheon-dam. Species belonging to the Igroup is considered to be important in the river ecosystem stability of large dams downstream areas.

Ecological Role of Urban Stream and Its Improvement (도시하천의 생태학적 역할과 개선방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.15-25
    • /
    • 1998
  • A stream plays an important role as the source of drinking water, the ecological space and the living space. But the today's urban stream whose ecosystem is destroyed and water quality become worse in consequence of covering, concrete dyke construction, and the adjustment of high-water-ground[dunchi], is deprived of the function as a stream. Therefore this paper aims to elucidate the role that urban stream plays ecologically and to try to find a improvement to the problem. A stream is the pathway through which several types of the solar radiation energy are transmitted and the place which is always full of life energy. In the periphery of a stream, primary productivity is high and carrying capacity of population is great. Thus ancient cities based on agricultural products grew out of the fertile surroundings of stream. In Korea most cities of the Chosen Dynasty Period based on the agriculture have grown out of the erosional basins where solar energy is concentrated. The role of a stream in this agricultural system is the source of energy and material(water and sediment) and a lifeline. In consequence of the growth of cities and the rapid growing demands of water supply after the Industrial Revolution, a stream has become a more important locational factor of city. However, because cities need the life energy of urban streams no longer, urban streams cannot play role as a lifeline. And As pollutant waste water has poured into urban streams after using external streams' water, urban streams have degraded to the status of a ditch. As the results of the progress of urbanization, the dangerousness of inundation of urban stream increased and its water quality became worse. For the sake of holding back it, local governments constructed concrete dyke, adjusted high-water-ground[dunchi], and covered the channel. But stream ecosystem went to ruin and its water quality became much worse after channelization. These problems of urban stream can be solved by transmitting much energy contained in stream to land ecosystem as like rural stream. We should dissipate most of the energy contained in urban stream by cultivating wetland vegetation from the shore of stream to high-water-ground, and should recover a primitive natural vigorous power by preparation of ecological park.

  • PDF

Five-year monitoring of microbial ecosystem dynamics in the coastal waters of the Yeongheungdo island, Incheon, Korea (대한민국 인천 영흥도 인근 해역 미소생태계의 5년간의 군집구조 변화 모니터링)

  • Sae-Hee Kim;Jin Ho Kim;Yoon-Ho Kang;Bum Soo Park;Myung-Soo Han;Jae-Hyoung Joo
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • In this study, changes in the microbial ecosystem of the Yeongheungdo island coastal waters were investigated for five years to collect basic data. To evaluate the influence of distance from the coast on the microbial ecosystem, four sites, coastal Site (S1) and 0.75, 1.5, and 3 km away from the coast, were set up and the changes in physicochemical and biological factors were monitored. The results showed seasonal changes in water temperature, dissolved oxygen, salinity, and pH but with no significant differences between sites. For nutrients, the concentration of dissolved inorganic nitrogen increased from 6.4 μM in April-June to 16.4 μM in July-November, while that of phosphorus and silicon phosphate increased from 0.4 μM and 2.5 μM in April-June to 1.1 μM and 12.0 μM in July-November, respectively. Notably, phosphorus phosphate concentrations were lower in 2014-2015 (up to 0.2 μM) compared to 2016-2018 (up to 2.2 μM), indicating phosphorus limitation during this period. However, there were no differences in nutrients with distance from the coast, indicating that there was no effect of distance on nutrients. Phytoplankton (average 511 cells mL-1) showed relatively high biomass (up to 3,370 cells mL-1) in 2014-2015 when phosphorus phosphate was limited. Notably, at that time, the concentration of dissolved organic carbon was not high, with concentrations ranging from 1.1-2.3 mg L-1. However, no significant differences in biological factors were observed between the sites. Although this study revealed that there was no disturbance of the ecosystem, further research and more basic data on the microecosystem are necessary to understand the ecosystem of the Incheon.