• Title/Summary/Keyword: 발화한계온도

Search Result 58, Processing Time 0.026 seconds

The Measurement of the Combustible Properties of tert-Butylbenzene for the Improvement of MSDS (Material Safety Data Sheet) (MSDS 개선을 위한 tert-Butylbenzene의 연소특성치의 측정)

  • Ha, Dong-Myeong
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.25-30
    • /
    • 2017
  • Because of the vertical combustion characteristics of combustible substances, accurate substance safety information for their safe use, handling and transportation is essential. The flash point, fire point, explosion limits and autoignition temperature (AIT) are important safety parameters which need special attention in chemical plants and laboratories that handle dangerous materials. In this study, tert-butylbenzene which is widely used as an intermediate material in the chemical industry was selected. For the reliability of the flammable properties of tert-butylbenzene, this study was investigated the explosion limits of tert-butylbenzene in the reference data. The flash points, fire points and AITs by the ignition delay time for tert-butylbenzene were experimented. The lower flash points of tert-butylbenzene by using the Setaflash and Pensky-Martens closed-cup testers measured $39^{\circ}C$ and $44^{\circ}C$, respectively. The flash points of tert-butylbenzene by using the Tag and Cleveland open cup testers are measured $51^{\circ}C$ and $54^{\circ}C$. And the fire points of tert-butylbenzene by the Tag and Cleveland open cup testers were $54^{\circ}C$ and $58^{\circ}C$ respectively. The AIT of tert-butylbenzene measured by the ASTM 659E tester was measured as $450^{\circ}C$. The lower explosion limit of $39^{\circ}C$ which measured by the Setaflash flash point tester was calculated to be 0.68 vol%.

금속선을 삽입한 고체 추진제의 연소 특성

  • 유지창;박영규;김인철;임유진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.131-137
    • /
    • 1996
  • HTPB/AP/Al이 주성분인 2종의 혼합형 추진제를 대상으로 4종의 금속선(Ag, Cu, Al, Ni-Cr)윰 각각 삽입하여 금속선의 직경(0.1~0.8mm)과 연소 압력에 따른 금속선에 인접한 고체 추진제의 연소 속도 증가비($r_w$/$r_sb$)와 압력 지수(n)의 변화를 고찰하였다. 금속선을 추진제에 삽입함으로써 추진제의 $r_w$/$r_sb$ 는 크게 중가하였고, 1000 psia의 압력에서의 최대 6.59배 증가하였다. 그러나 녹는 점이 비교적 낮은 Al 선이나 Ag선은 금속선 직경이 작아짐에 따라 한계 직경에서 $r_w$가 급격히 감소하는 최대값이 존재하였다. 자연 발화 온도와 금속선으로 전달되는 열원인 연소 기체 불꽃 온도로 구성된 무차원군을 Buckingham pi 정리에 의해 구해진 $r_w$/$r_sb$ 에 대한 기존의 무차원 실험식에 추가로 적용하여 계산해 본 결과, 자연 발화 온도는 고려하지 않고 금속선의 녹는 점과 연소 기체의 불꽃 온도를 무시한 Hsing 의 실험식에 의해 계산된 결과보다 표준 편차가 45%이상 줄어듬을 알 수 있었다.

  • PDF

The Prediction of Lower Explosion Limit of n-Hexadecane (n-Hexadecane의 폭발하한계 예측)

  • Ha, Dong-Myeong;Park, Sang-Hun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.163-163
    • /
    • 2013
  • 최근의 수많은 산업 현장에서 취급하고 있는 각종 화학물질은 잠재적 위험성이 크므로 보관, 수송 및 취급할 때 특별한 주의가 필요하다. 공정 설계 시 정확하지 않은 폭발한계를 사용함으로서 사고가 유발되는 경우가 많다. 따라서 사업장에서 사용되고 있는 화학물질의 화재 및 폭발 특성치인 인화점, 폭발한계 등을 정확히 파악하는 것은 중요하다. 인화점은 하부인화점과 상부인화점으로 나누고 있고 있으며, 인화점은 가연성 액체의 화재 위험성을 나타내는 지표로써, 가연성액체의 액면 가까이서 인화할 때 필요한 증기를 발산하는 액체의 최저온도 또는 점화원 존재시 인화가 일어날 수 있는 최저온도, 그리고 가연성증기의 포화증기압이 공기와 혼합기체의 폭발한계 하한농도와 같게 되는 온도로 정의한다. 폭발한계는 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도범위 내에서만 연소가 이루어지는 혼합범위를 말한다. 본 연구에서는 실제 공정에서 사용되고 있는 n-Hexadecane의 인화점을 측정하여 이를 기존 문헌값과 비교 하였고, 측정된 인화점을 이용하여 폭발한계를 예측하였다. 예측된 폭발한계를 여러 문헌에 제시된 자료과 비교하여 공정안전에 타당한 자료를 제시하였다. 본 연구는 n-Hexadecane을 취급하는 공정에서 안전 확보의 중요한 지침 마련과 MSDS D/B의 최신화에 유용한 정보를 제공하는데 목적이 있다.

  • PDF

Explosion Characteristics of Bituminous Coal Dusts in Cement Manufacturing Process (시멘트 제조공정에서 유연탄 분진의 폭발특성)

  • Kim, Won-Hwai;Lee, Seung-Chul;Seung, Sam-Sun;Kim, Jin-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.257-263
    • /
    • 2008
  • We have examined explosion characteristics of bituminous coal dusts in cement manufacturing process. In order to find the thermal properties, we investigated weight loss and ignition temperature of coal materials using TGA and DSC. Also specific surface area of dust was investigated. Dust explosion experiments with Hartman's dust explosion apparatus have been conducted by varying concentration and size of coal dust for explosion probability and lower limit explosion concentration. According to the results for thermal properties, there is a little change by dust size. However, the specific surface area of dust is increased by decreasing dust size. The explosion test results show that small size and increasing concentration of dusts make dust explosion easier. And we find that the lower limit explosion concentration of bituminous coal is $0.3mg/cm^3$ and the probability is 100% on $0.9mg/cm^3$ in 170/200 mesh used in cement manufacturing process.

Measurement and Prediction of Combustuion Properties of di-n-Buthylamine (디노말부틸아민의 연소특성치 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.42-47
    • /
    • 2019
  • In this study, combustion characteristics were measured by selecting di-n-buthylamine, which is widely used as an emulsifier, insecticide, additive, rubber vulcanization accelerator, corrosion inhibitor, and raw material for dye production. The flash point of the di-n-buthylamine was measured by Setaflash, Pensky-Martens, Tag, and Cleveland testers. And the AIT of the di-n-buthylamine was measured by ASTM 659E. The explosion limits of the di-n-buthylamine was calculated using the measured flash points by Setaflash tester. The flash point of the di-n-buthylamine by using Setaflash and Pensky-Martens closed-cup testers were experimented at 38 ℃ and 43 ℃, respectively. The flash points of the di-n-buthylamine by Tag and Cleveland open cup testers were experimented at 48 ℃. The AIT of the di-n-buthylamine was experimented at 247 ℃. The LEL and UEL calculated by using lower and upper flash points of Setaflash tester were calculated at 0.69 vol% and 7.7 vol%, respectively. The measurement of the flash point measurement and the calculation method of the explosion limit prediction presented in this study can be used to study the fire and explosion characteristics of the other combustible liquids.

The Measurement and Investigation of Fire and Explosion Characteristics of Isopropyl Alcohol (이소프로필 알코올의 화재 및 폭발 특성치의 측정 및 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.8-15
    • /
    • 2012
  • For the safe handling of isopropyl alcohol, the explosion limits were investigated. The lower flash points, upper flash points, fire point, and AITs(autoignition temperatures) by ignition time delay for isopropyl alcohol were experimented. By using literature data, the lower and upper explosion limits of isopropyl alcohol were recommended as 2.0 and 12.0 vol%, respectively. The lower flash points of isopropyl alcohol were experimented $12{\sim}14^{\circ}C$ by using closed-cup tester and $18{\sim}19^{\circ}C$ by using open cup tester. And the upper flash points of isopropyl alcohol was experimented $38^{\circ}C$ by using Setaflash closed-cup tester. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus was $463^{\circ}C$.

The Measurement and Prediction of the Combustible Properties of of Benzyl-Alcohol for MSDS (Material Safety Data Sheet) (MSDS (Material Safety Data Sheet)를 위한 벤질알코올 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.190-194
    • /
    • 2017
  • The combustion properties for the prevention of the fire and explosion in the work place are flash point, explosion limit, autoignition temperature (AIT) etc.. The using of the corrective combustion properties of the MSDS (Material Safety Data Sheet) of the handling substance for the chemical process safety is very important. For the safe handling of benzyl alcohol which is widely used in the chemical industry, the flash point and the AIT were measured. And, the lower explosion limit (LEL) of benzyl alcohol was calculated by using the lower flash point which obtained in the experiment. The flash points of benzyl alcohol by using the Setaflash and Pensky-Martens closed-cup testers measured $90^{\circ}C$ and $93^{\circ}C$, respectively. The flash points of benzyl alcohol by using the Tag and Cleveland open cup testers are measured $97^{\circ}C$ and $100^{\circ}C$. The experimental AIT of benzyl alcohol by ASTM 659E tester was measured as $408^{\circ}C$. The LEL of benzyl alcohol measured by Setaflash closed-cup apparatus was calculated as 1.17 vol% at $90^{\circ}C$. In this study, it was to possible predict the LEL by using the lower flash point of benzyl alcohol which measured by Setaflash closed-cup tester.

A Study on Analysis of Characteristics Combustion of Floor Covering Materials (바닥내장재의 연소특성 분석에 관한 연구)

  • Park, Young-Ju;Lee, Hae-Pyeong;Kim, Hyun-Ju
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.77-83
    • /
    • 2010
  • In this study, we analyzed the combustion characteristics of four different floor covering materials(wood, monorium, laminatedpaper, and varnish-laminated paper) with regard to their ignitibility, thermal characteristics and flame retardancy by using an ignition temperature tester, a dual cone calorimeter, a thermogravimetric analyzer and limited oxygen index, for their fire risk assessment. According to the result, monorium had the lowest ignition temperature of $325^{\circ}C$ and the laminated paper and the varnish-laminated paper promptly ignited before 7s. Further, the wood showed the largest total heat release of $100MJ/m^2$, and the varnish-laminated paper showed the highest peak heat release rate. From the thermogravimetric analysis, it was shown that all specimens underwent rapid weight loss at $300{\sim}400^{\circ}C$. The limit oxygen indices of the laminated paper and the varnish-laminated paper were in the range of 20~21%, while it was 34% for wood. This study enabled us to confirm that wood, laminated paper and varnish-laminated paper have a relatively short ignition time and are easy to burn but they all have low heat release. In contrast, wood showed the lowest fire risk among them and had excellent flame retardancy but with high heat release.

The Measurement and Prediction of Combustible Properties of Dimethylacetamide (DMAc) (디메틸아세트아미드(DMAc)의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.553-556
    • /
    • 2015
  • The usage of the correct combustion characteristic of the treated substance for the safety of the process is critical. For the safe handling of dimethylacetamide (DMAc) being used in various ways in the chemical industry, the flash point and the autoignition temperature (AIT) of DMAc was experimented. And, the lower explosion limit of DMAc was calculated by using the lower flash point obtained in the experiment. The flash points of DMAc by using the Setaflash and Pensky-Martens closed-cup testers measured $61^{\circ}C$ and $65^{\circ}C$, respectively. The flash points of DMAc by using the Tag and Cleveland automatic open cup testers are measured $68^{\circ}C$ and $71^{\circ}C$. The AIT of DMAc by ASTM 659E tester was measured as $347^{\circ}C$. The lower explosion limit by the measured flash point $61^{\circ}C$ was calculated as 1.52 vol%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.

Measurement and Prediction of the Combustible Properties of Propionic Anhydride (Propionic Anhydride의 연소특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.66-72
    • /
    • 2016
  • For the safe handling of Propionic Anhydride being used in various ways in the chemical industry, the flash point and the autoignition temperature(AIT) of Propionic Anhydride was experimented. And, the lower explosion limit of propionic anhydride was calculated by using the lower flash point obtained in the experiment. The flash points of propionic anhydride by using the Setaflash and Pensky-Martens closed-cup testers measured $60^{\circ}C$ and $61^{\circ}C$, respectively. The flash points of propionic anhydride by using the Tag and Cleveland open cup testers are measured $67^{\circ}C$ and $73^{\circ}C$. The AIT of propionic anhydride by ASTM 659E tester was measured as $280^{\circ}C$. The lower explosion limit by the measured flash point $60^{\circ}C$ was calculated as 1.37 Vol.%. It was possible to predict lower explosion limit by using the experimental flash point or flash point in the literature.