• Title/Summary/Keyword: 발현 억제 벡터

Search Result 27, Processing Time 0.032 seconds

Inhibitory Effects of a Recombinant Viral Cystatin Protein on Insect Immune and Development (바이러스 유래 시스타틴 재조합 단백질의 곤충 면역 및 발육 억제효과)

  • Kim, Yeongtae;Eom, Seonghyun;Park, Jiyeong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • Cystatins (CSTs) are reversible and competitive inhibitors of C1A cysteine proteases, corresponding to papain-like cathepsins in plants and animals. A viral CST (CpBV-CST1) was identified from a polydnavirus, Cotesia plutellae bracovirus (CpBV). Our previous study indicated that a transient expression of CpBV-CST1 interfered with immune response and development of Plutella xylostella larvae. To directly demonstrate the protein function, this study produced a recombinant CpBV-CST1 protein (rCpBV-CST1) using bacterial expression system to determine its inhibitory activity against cysteine protease and to assess its physiological alteration in insect immune and development. The open reading frame of CpBV-CST1 encodes a polypeptide of 138 amino acids (${\approx}15kDa$). rCpBV-cystatin protein in BL21 STAR (DE3) competent cells containing a recombinant pGEX4T-3:CpBV-CST1 was over-expressed by 0.5 mM IPTG for 4 h. In biological activity assay, the purified rCpBV-CST1 showed a significant inhibition against papain activity. It inhibited a cellular immune response of hemocyte nodule formation in the beet armyworm, Spodoptera exigua. Moreover, its oral administration retarded larval development of the diamondback moth, Plutella xylostella in a dose-dependent manner. These results suggest that CpBV-CST1 may be applied to control insect pest populations.

Study on the construction of a starvation promoter vector system derived from Pseudomonas putida (Pseudomonas putida 에서 분리된 starvation promoter를 이용한 vector의 개발 및 응용에 관한 연구)

  • Kim, Young-Jun;Kim, Dae-Sun;Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.67-74
    • /
    • 2003
  • Starvation promoters can be utilized for in situ bioremediation and for the efficient bioprocessing. Previously we have cloned and characterized strong starvation promoters from envrionmentally relevant bacteria, Pseudomonas putida strains (Y. Kim, and A. Matin, J. Bacteriol. 177:1850-1859, 1995). Here we report the construction of the plasmid pYKS101 using one of the starvation promoters from P. putida MK1. The pYKS101 was found to be useful for a novel starvation promoter-driven gene expression system. Under this system, the target reporter gene, lacZ, was stably integrated into the chromosomal DNA of P. putida MK1. ${\beta}$-galactosidase activity was found to be four-fold higher upon carbon starvation than during exponential growth. The resultant recombinant strain is indigenous to the environment contaminated with various toxic materials, hence can be a good candidate for in situ bioremediation.

  • PDF

Regulatory Characterization of xylA Promoter Region in Escherichia coli (대장균의 xylA 프로모터 영역의 조절 특성)

  • Kang, Byung-Tae;Roh, Dong-Hyun;Joo, Gil-Jae;Rhee, In-Koo
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.443-448
    • /
    • 1996
  • In order to investigate the function of xylA promoter(Pxyl) as regulatory region Pxyl-lacZ fusion gene was constructed by the insertion of xylA promoter to the multiple cloning site of upstream of lacZ gene in a multicopy numbered plasmid pMC1403 containing promoterless lac operon, which was designated pMCX191, and Pxyl-lacZ fragment from pMCX191 was inserted to low copy numbered plasmid pLG339, designated pLGX191. The expressions of ${\beta}-galactosidase$ in these recombinant plasmids containing Pxyl-lacZ fusion gene were induced strongly by the addition of xylose, repressed by the addition of 0.2% glucose in the presence of xylose. The catabolite repressions were derepressed by the addition of 1 mM cAMP as same as native xylA gene. The fragment of xylA promoter was partially deleted from the upstream of xylA promoter by exonuclease III to investigate the regulation site of xylA promoter and the degrees of deletion derivatives of xylA promoter were analyzed by the DNA base sequencing. By the investigations of the induction by xylose, repression by glucose and derepression by cAMP on xylose isomerase production, the regulation site of xylA promoter may be located in segment between -165 and -59 bp upstream from the initiation site of xylA translation.

  • PDF

Bombyx mori Protein Disulfide Isomerase (bPDI) Protects Sf9 Cells from Endoplasmic Reticulum (ER) Stress (소포체 스트레스에 대한 Protein Disulfide Isomerase의 세포보호효과)

  • Goo, Tae-Won;Yun, Eun-Young;Kim, Sung-Wan;Choi, Kwang-Ho;Kang, Seok-Woo;Kwon, Ki-Sang;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1129-1134
    • /
    • 2007
  • In the previous our study, a cDNA that encodes protein disulfide isomerase from Bombyx mori (bPDI)was isolated and characterized. bPDI has an open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and ER (endoplasmic reticulum) retention signal of the KDEL motif at its C-terminal. Recent studies have demonstrated that misfolded proteins are accumulated in many diseases including Alzheimer’s, goiter, emphysema, and prion infections. bPDI was over-expressed or knock-downed in Sf9 cells to study the relationship between bPDI expression and protections against protein misfolding. bPDI gene was cloned in insect expression vector pIZT/V5-His for over-expression and bPDI double-stranded RNA (dsRNA) was generated for knock-down. Over-expression of bPDI significantly improved survival rate, but bPDI dsRNA transfection significantly reduced survival rate after 48 hours exposure. In mock-transfected or wild-type cells had no significant effect. The results support the view that bPDI is one of the important intracellular components for cell protect mechanism, especially, against ER stress such as protein misfolding.

Biochemical Characterization of Heterologously Expressed Chitinase 1 (Chi1) from an Inky Cap, Coprinellus congregatus (이형 재조합한 먹물버섯 Coprinellus congregatus Chitinase 1 (Chi1)의 발현과 생화학적 특성 분석)

  • Yoo, Yeeun;Choi, Hyoung T.
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.309-312
    • /
    • 2013
  • Fungal cell walls consist of various glucans and chitin. Fungi produce chitinases for their growth and development. The inky cap, Coprinellus congregatus, produces at least two different chitinases during its life cycle. Chitinase 1 (chi1) is expresses throughout its life cycle while chitinase 2 (chi2) is expressed at the mushroom autolysing phase. The cloned cDNA of chi1 is successfully expressed as a fusion protein with c-myc in Pichia pastoris, and purified by the affinity chromatography. The optimum pH and temperature of Chi1 was pH 8.0 and $35^{\circ}C$, respectively when 4-nitrophenyl N,N',N"-triacetyl-${\beta}$-D-chitotrioside was used as the substrate. The $K_m$ value and $V_{max}$ for the substrate was 0.780 mM and 0.10 OD $min^{-1}unit^{-1}$, respectively. The addition of purified Chi1 resulted in total growth inhibition against several plant pathogenic fungi such as Alternaria alternata, Fusarium graminearum and Trichoderma harzianum at the concentration of 60 ${\mu}g/ml$.

Antisense GA 3β-Hydroxylase Gene Transferred to Rice Plants. (Antisense gibberellin 3β-hydroxylase발현 형질전환벼)

  • 강용원;윤용휘;김길웅;이인중;신동현
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.644-649
    • /
    • 2004
  • During plant development, active gibberellins (GAs) control many aspects of plant growth and development including seed germination, stem elongation, flower induction, anther development and seed growth. To understand the biosynthesis and functional role of active GAs in high plants, this study investigated GA 3$\beta$-hydroxylase gene en-coding $GA_1$ and$GA_4$ catalizing last step in GA biosynthetic pathway. The antisense GA 3$\beta$-hydroxylase gene was inserted into expression vector, pIG121-Hm. Calli derived from mature seeds of rice (Oryza satiiva L. cv. Donjinbyeo) were co-cultivated with Agrohacterium tumefaciens EHA101 earring a pIG121-Hm containing hygromycin resistance ($Hyg^r$) and antisense GA 3$\beta$-hydroxylase gene. Seventeen transgenic plants obtained inhibiting GA 3$\beta$-hydroxylase. Transgenic plants had shorter plant height more than that of the Dongjinbyeo. Stable integration of antisense GA 3$\beta$-hydroxylase gene was confirmed by polymerase chain reaction of genomic DNA isolated from the leaf organs of the $T_o$ generation.

Expression of SARS-3CL Protease in a Cell-Free Protein Synthesis System (무세포 단백질 합성법을 이용한 활성형 SARS-3CL protease의 발현)

  • Park, Sun-Joo;Kim, Yong-Tae
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.552-558
    • /
    • 2012
  • Severe acute respiratory syndrome (SARS) is a severe respiratory infectious disease caused by a novel human coronavirus, SARS-CoV. The 3CL protease is a key enzyme in the proteolytic processing of replicase polyprotein precursors, pp1a and pp1ab, which mediate all the functions required for viral genomic replication and transcription. Therefore, this enzyme is a target for the development of chemotherapeutic agents against SARS. A large quantity of active SARS-3CL protease is required for development of anti-SARS agents. Here we have constructed overexpression vector for the production of the SARS-3CL protease. The gene encoding SARS-3CL protease was amplified using polymerase chain reaction and cloned into the pET29a expression vector, resulting in pET29a/SARS-3CLP. Recombinant SARS-3CL protease was successfully synthesized by the dialysis mode of the cell-free protein expression system, and purified by three-step fast protein liquid chromatography using HighQ and MonoP column chromatographies and Sephacryl S-300 gel filtration. In addition, the produced SARS-3CL protease was found to be an active mature form. This study provides efficient methods not only for the development of anti-SARS materials from natural sources, but also for the study of basic properties of the SARS-3CL protease.

Triptolide-induced Transrepression of IL-8 NF-${\kappa}B$ in Lung Epithelial Cells (폐상피세포에서 Triptolide에 의한 NF-${\kappa}B$ 의존성 IL-8 유전자 전사활성 억제기전)

  • Jee, Young-Koo;Kim, Yoon-Seup;Yun, Se-Young;Kim, Yong-Ho;Choi, Eun-Kyoung;Park, Jae-Seuk;Kim, Keu-Youl;Chea, Gi-Nam;Kwak, Sahng-June;Lee, Kye-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.52-66
    • /
    • 2001
  • Background : NF-${\kappa}B$ is the most important transcriptional factor in IL-8 gene expression. Triptolide is a new compound that recently has been shown to inhibit NF-${\kappa}B$ activation. The purpose of this study is to investigate how triptolide inhibits NF-${\kappa}B$-dependent IL-8 gene transcription in lung epithelial cells and to pilot the potential for the clinical application of triptolide in inflammatory lung diseases. Methods : A549 cells were used and triptolide was provided from Pharmagenesis Company (Palo Alto, CA). In order to examine NF-${\kappa}B$-dependent IL-8 transcriptional activity, we established stable A549 IL-8-NF-${\kappa}B$-luc. cells and performed luciferase assays. IL-8 gene expression was measured by RT-PCR and ELISA. A Western blot was done for the study of $I{\kappa}B{\alpha}$ degradation and an electromobility shift assay was done to analyze NF-${\kappa}B$ DNA binding. p65 specific transactivation was analyzed by a cotransfection study using a Gal4-p65 fusion protein expression system. To investigate the involvement of transcriptional coactivators, we perfomed a transfection study with CBP and SRC-1 expression vectors. Results : We observed that triptolide significantly suppresses NF-${\kappa}B$-dependent IL-8 transcriptional activity induced by IL-$1{\beta}$ and PMA. RT-PCR showed that triptolide represses both IL-$1{\beta}$ and PMA-induced IL-8 mRNA expression and ELISA confirmed this triptolide-mediated IL-8 suppression at the protein level. However, triptolide did not affect $I{\kappa}B{\alpha}$ degradation and NF-$_{\kappa}B$ DNA binding. In a p65-specific transactivation study, triptolide significantly suppressed Gal4-p65T Al and Gal4-p65T A2 activity suggesting that triptolide inhibits NF-${\kappa}B$ activation by inhibiting p65 transactivation. However, this triptolide-mediated inhibition of p65 transactivation was not rescued by the overexpression of CBP or SRC-1, thereby excluding the role of transcriptional coactivators. Conclusions : Triptolide is a new compound that inhibits NF-${\kappa}B$-dependent IL-8 transcriptional activation by inhibiting p65 transactivation, but not by an $I{\kappa}B{\alpha}$-dependent mechanism. This suggests that triptolide may have a therapeutic potential for inflammatory lung diseases.

  • PDF

Participation of protein disulfide isomerase 2 in the tolerance against mercury toxicity in Schizosaccharomyces pombe (수은 독성에 대한 Schizosaccharomyces pombe 단백질2황화물이성질화효소 2의 저항성)

  • Choi, Jiye;Lim, Chang-Jin;Kim, Kyunghoon
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.338-346
    • /
    • 2015
  • The present work was undertaken to address the role of protein disulfide isomerase 2 (Pdi2) in the mercury-tolerance of Schizosaccharomyces pombe, using the Pdi2-overexpressing recombinant plasmid pYPDI2 and the corresponding vector plasmid pRS316. When exposed to mercuric chloride, the PDI2 overepxression cells grew significantly better than the vector control cells. They revealed the lower levels of intracellular reactive oxygen species (ROS) and nitric oxide (NO), when incubated with mercuric chloride for 6 h, than the vector control cells. The PDI2 overepxression cells contained the higher levels of total glutathione (GSH) and superoxide dismutase (SOD) activity than the vector control cells, after 6 h of incubation in mercuric chloride. However, the PDI2 overepxression cells contained similar levels of glutathione peroxidase (GPx) activities, compared to those of the vector control cells. Taken together, the S. pombe Pdi2 promotes the tolerance against mercury toxicity through up-regulating total GSH and SOD and subsequently attenuating ROS and NO elevations.

Development of Egg Yolk Antibody Specific to the Pancreatic Lipase Domain for Anti-Obesity (비만 억제를 위한 췌장 리파아제 도메인에 대한 특이 난황항체의 개발)

  • Woo, Seung-Eun;Kwon, Jin-Hyuk;Yang, Si-Yong;Park, Hyun-Ju;Kim, Hyung-Kwoun
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.299-306
    • /
    • 2008
  • Human pancreatic lipase is a digestive enzyme which is synthesized in pancreas, secreted into small intestine, and there hydrolyze the fat in food. Pancreatic lipase protein composes of catalytic domain and colipase-binding domain. In this research, the gene segments corresponding to total protein, catalytic domain, and co lipase-binding domain were cloned by PCR method, inserted into an expression vector, and then used to transform Escherichia coli BL21 (DE3). The recombinant proteins produced were purified and injected intramuscularly three times into laying hens. The egg yolk antibodies (IgY) were obtained from the egg yolks and tested for their antibody titer. Among three IgY, the IgY against colipase-binding domain showed the highest antibody titer. All three IgY had inhibitory effects on the porcine pancreatic lipase. Among them, the IgY against colipase-binding domain showed the highest inhibition effects. The fat diet with corn oil and IgY was administrated to the experimental rats and their blood compositions were examined with time course. The triglyceride concentration of treated rats was decrease meaningfully when compared with those of control rats. This suggested that the IgY against colipase-binding domain antigen inhibited pancreatic lipase in vivo.