• Title/Summary/Keyword: 발포체

Search Result 153, Processing Time 0.023 seconds

Structural Changes of Homopolymer Polypropylene Foam with Molecular Weights and Rheological Properties : (1) In Batch Process (분자량 및 유변 특성에 따른 단일 중합체 폴리프로필렌의 발포체 변화 : (1) 회분식 공정)

  • 홍다윗;윤광중;이기윤
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2002
  • The effects of molecular weights and rheological properties of polypropylene (PP), on its foam structures in batch process were investigated. The effects of crosslinking process were also considered in this study. The rheological properties of polypropylene, such as storage modulus(G'), loss modulus(G"), zero shear viscosity($\eta_O$), and relaxation time($\lambda$), increased with the increase of molecular weights, and these increases in rheological properties directly affected the stability improvements of the PP foam. The increase of crosslinked PP's gel content stopped at the irradiation dose of 3.2 Mrad. The development of foam structures was more enhanced as the irradiation dose increased up to 3.2 Mrad. When the irradiation dose exceeded 3.2 Mrad, however, it negatively affected the structural development of the foam by diminishing gel contents of the foaming material, which resulted in instability of the foam structure.ture.

Reinforced Polymer/Clay Nanocomposite Foams with Open Cell Prepared via High Internal Phase Emulsion Polymerization (고내상 에멀션 중합에 의해 제조된 열린 기공을 갖는 고장도 고분자/점토 나노복합 발포체)

  • Song, In-Hee;Kim, Byung-Chul;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Reinforced open cell micro structured foams were prepared by the polymerization of high internal phase emulsions incorporating inorganic thickeners. Organoclays were used as oil phase thickener, and sodium montmorillonite was used as aqueous phase thickener. Rheological properties of emulsions increased as oil phase thickener concentration and agitation speed increased, due to the reduced drop size reflecting both competition between continuous and dispersed phase viscosities and increase of shear force. Drop size variation with thickener concentration could be explained by a dimensional analysis between capillary number and viscosity ratio. Upon the foams polymerized by the emulsions, compression properties, such as crush strength and Young's modulus were measured and compared. Among the microcellular foams, the foam incorporated with an organoclay having reactive group showed outstanding properties. It is speculated that the exfoliated silicate layers inside polystyrene matrix, resulting in nanocomposite foam, are the main reason why this foam has enhanced properties.

Morphology and Properties of Microcellular foams by High Infernal Phase Emulsion Polymerization: Effect of Emulsion Compositions (HIPE 중합에 의한 미세기공 발포체의 모폴로지 및 물성: 유화계 조성의 영향)

  • 정한균;지수진;이성재
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.759-766
    • /
    • 2002
  • Regular, spherical and isotropic open-microcellular foams having low density were prepared by the high internal phase emulsion (HIPE) polymerization mainly composed of styrene monomer and water The effects of Polymerization conditions. such as the content of water, divinylbenzene as a crosslinking agent and dodecane as a chain transfer agent, were investigated based on the tell size and foam properties. The microstructural morphology was observed using scanning electron microscopy (SEM) and the compression modulus of the foam was evaluated using compression test. The dropwise feeding of the aqueous phase into the oil phase was more effective than the batch feeding in producing the uniform and stable foam. Agitation speed and surfactant strongly influenced on the cell size and the window size between water droplets. Introduction of chain transfer agent increased the cell size, whereas it decreased the window size. Compression modulus increased with the crosslinking agent, but decreased with the chain transfer agent.

A Foamed Body through the Complexation with the Sepiolite and Expanded Pearlite (해포석과 팽창진주암의 복합화에 의한 발포체 제조)

  • Lee, Chul-Tae;Jang, Moonho;Park, Tae-Moon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2012
  • Production process of the flexible ceramic foamed body through the complexation with the fiberous sepiolite and expanded pearlite was researched. The processing of fibrillation of the inorganic mineral fiber sepiolite is the most important whole processing for manufacturing of the ceramic foamed body consisting of the expanded perlite and sepiolite. The fibrous sepiolite and expanded pearlite are blended and becomes the slurry phase. And this slurry phase is converted to a massive foamed body through the low temperature heat treatment process less than $300^{\circ}C$. The heat-treatment process of the slurry phase composite has to be designed to include the evaporation step of the moisture remaining among the slurry composition, foaming step by the decomposition of the foaming agent, and resolution removal step of the organic material which was added in the composite remained after the foaming step. The heat treatment process should be considered as significant factors in design of total process. As to the condition of heat treatment process and foaming agent, there was the a correlation. An organic type foaming agent like DSS (dioctyl sodium sulfosuccinte) was effective in foaming of the slurry compound consisting of the expanded perlite and sepiolite fiber.

Phase Morphology and Foaming of Polypropylene/Ethylene-octene Copolymer Blends (폴리프로필렌/에틸렌옥텐 공중합체 블렌드의 상분리 구조 및 발포 특성)

  • 서관호;임정철
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.707-718
    • /
    • 2001
  • Polypropylene (PP) exhibits many beneficial properties such as low density high thermal stability, chemical resistance, good processability and recyclability. However, only limited research has been done on expanded polypropylene (EPP). In this study, we were trying to prepare EPP with chemical blowing agent. Ethylene-octene copolymer (mPE) was melt blended with PP to enhance melt fluidity of PP at processing temperature and to make more flexible foamed material. Prior to foaming, phase morphology of PP/mPE blends were investigated to examine the effect of phase morphology on the foaming ratio and cell structure of foams. Phase morphology of PP/mPE blends were affected by the content of mPE and mixing torque ratio. At the same composition, it was affected by mixing rpm. High blowing ratio and stable cell structure were obtained in the blend which has the continuous PP matrix with dispersed droplets of mPE.

  • PDF

Effects of Foaming Temperature and Carbon black Content on the Cure Behaviors and Foaming Characteristics of the Natural Rubber Foams (발포온도와 카본블랙 함량이 천연고무 발포체의 가황거동 및 발포특성에 미치는 영향)

  • Choi, Kyo-Chang;Kim, Joon-Hyung;Yoon, Jin-Min;Kim, Soo-Yeon
    • Elastomers and Composites
    • /
    • v.41 no.3
    • /
    • pp.147-156
    • /
    • 2006
  • To investigate the influence of the foaming temperature and carbon black content on the cure behaviors and foaming characteristics of the foams. natural rubber (NR) was foamed at five temperature zones (145, 150, 155, 160 and $165^{\circ}C$) and different feeding ratios of the carbon black. A decreasing trend of the scorch time, $t_{s2}$ and cure time, $t_{90}$ was observed upon increasing foaming temperature and carbon black content. The optimal temperature for vulcanization and foaming of NRs in this study was considered to be $165^{\circ}C$ where density of the loomed NRs is lower than those at other four temperature regions. The rule rate index of the NRs foamed at $145^{\circ}C$ is smaller than those at 150, 155, 160 and $165^{\circ}C$. The results of the expansion ratio and micrographs of the foamed NRs were founded to support the density characteristics. The thickness of each of the struts formed inside the rubber matrix decreases with increasing the foaming temperature, while it increases with increasing the carbon black content.

Preparation of Poly(L-lactic acid) Scaffolds by Melt Extrusion Foaming (용융 압출 발포에 의한 폴리락틱산 지지체 가공)

  • Lee Jong Rok;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.2
    • /
    • pp.198-203
    • /
    • 2005
  • Melt extrusion foaming process for the preparation of poly(L-lactic acid) (PLLA) scaffolds was carried out and the effects of foaming conditions on the pore structure of PLLA scaffolds and their mechanical properties were investigated. The porosity and mechanical properties of fabricated scaffolds were compared with the scaffolds obtained from the salt leaching method as well. It was found that the optimum pore structure was achieved when the PLLA melt was kept in extruder for the maximum decomposition time of blowing agent. In order to maintain the proper scaffolds structure, the blowing agent content should be less than $10\;wt\%$. It can be concluded that melt extrusion foaming process allows for the production of scaffold having higher mechanical properties with reasonable pore size and open cell structure for hard tissue regeneration even though it has less porosity than scaffolds made by salt leaching process.

Preparation and characterization of poly(dimethylsiloxane) foam prepared by hydrogen condensation reaction (수소 축합 반응에 의한 폴리디메틸실록산 미세 발포체의 제조 및 물성분석 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.802-812
    • /
    • 2016
  • Silicone foam is very useful as flame resistant material for many industrial areas such as high performance gasketing, thermal shielding, vibration mounts, and press pads. A silicone foam was prepared through simultaneous crosslinking and foaming by hydrogen condensation reaction of a vinyl-containing polysiloxane (V-silicone) and a hydroxyl-containing polysiloxane (OH-silicone) with hydride containing polysiloxane (H-silicone) in the presence of platinum catalyst and imorganic filler at room temperature. This is more convenient process for silicone foam manufacturing than the conventional separated crosslinking and foaming systems. Funtionalized silicones we used in this experiment were consisted with a V-silicone containing 1,0 meq/g of vinyl groups and a viscosity of 20 Pa-s, an OH-silicone with 0.4 meq/g of hydroxyl groups and a viscosity from 50 Pa-s, and an H-silicone containing 7.5 meq/g of hydride groups and a viscosity of 0.06 Pa.s. The effects of compositions of functionalized silicones and additives, such as catalyst and filler on the structure and mechanical properties of silicone foam were studied. 0.5 wt% of Pt catalyst was enough to accelerate the foaming rate of silicone resins. The addition of OH-silicone with lower viscosity accelerates the initial foaming rate and decreases the foam density, but the addition of V-silicone with lower viscosity reduces the tensile strength as well as the elongation. The final foam density, tensile strength, and elogation of silicone foam prepared under the SF-3 condition increase maximum to $0.58g/cm^3$, $3,51kg_f/cm^2$, and 176 %, repectively. We found out the filler alumina also played an important role to improve the mechanical properties of silicone foams in our foaming system.

A Study on the Characteristics of the Adiabatically Expanded Polyolefin Structured Foams (단열 발포 폴리올레핀계 구조체의 특성에 관한 연구)

  • Hwang Jun-Ho;Kim Woo-nyon;Jun Jae-Ho;Kwak Soon-Jong;Hwang Seung-Sang;Hong Soon-Man
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.605-612
    • /
    • 2005
  • This study investigates the isothermal crystallization behaviors of polypropylene-polyethylene-(1-butene) terpolymer and the adiabatically expanded polyolefin structured foams. For this purpose, butane gas was used as a physical blowing agent. Avrami equation has been used to interpret theoretically the experimental results obtained by either DSC or polarized optical microscope. It is believed that elongation induced crystallization occurring during the adiabatic expansion process has resulted in an increase in crystallization rate, eventually leading to a faster growth rate of spherulites and an increase in the nucleation density. An analysis of the foam by SEM images showed that the structure of foam is uniform (below diameter 30 $\mu$m closed cell) In addition, the thermal conductivity and the compressive strength of the polyolefin structured foams was measured. The thermal conductivity of foamed resin with excellent insulation characteristics is reduced compared with unfoamed resin. The compressive strength is decreased with increase in the expansion ratio.