• 제목/요약/키워드: 발전량 예측

검색결과 532건 처리시간 0.031초

BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법 (Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM)

  • 박성우;정승민;문재욱;황인준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권8호
    • /
    • pp.339-346
    • /
    • 2022
  • 최근 화석연료의 무분별한 사용으로 인한 자원고갈 문제 및 기후변화 문제 등이 심각해짐에 따라 화석연료를 대체할 수 있는 신재생에너지에 대한 관심이 증가하고 있다. 특히 신재생에너지 중 태양광 에너지는 다른 신재생에너지원에 비해 고갈될 염려가 적고, 공간적인 제약이 크지 않아 전국적으로 수요가 증가하고 있다. 태양광 발전 시스템에서 생산된 전력을 효율적으로 사용하기 위해서는 보다 정확한 태양광 발전량 예측 모델이 필요하다. 이를 위하여 다양한 기계학습 및 심층학습 기반의 태양광 발전량 예측 모델이 제안되었지만, 심층학습 기반의 예측 모델은 모델 내부에서 일어나는 의사결정 과정을 해석하기가 어렵다는 단점을 보유하고 있다. 이러한 문제를 해결하기 위하여 설명 가능한 인공지능 기술이 많은 주목을 받고 있다. 설명 가능한 인공지능 기술을 통하여 예측 모델의 결과 도출 과정을 해석할 수 있다면 모델의 신뢰성을 확보할 수 있을 뿐만 아니라 해석된 도출 결과를 바탕으로 모델을 개선하여 성능 향상을 기대할 수도 있다. 이에 본 논문에서는 BiLSTM(Bidirectional Long Short-Term Memory)을 사용하여 모델을 구성하고, 모델에서 어떻게 예측값이 도출되었는지를 SHAP(SHapley Additive exPlanations)을 통하여 설명하는 설명 가능한 태양광 발전량 예측 기법을 제안한다.

풍향과 풍속의 특징을 이용한 SVR기반 단기풍력발전량 예측 (Forecasting of Short-term Wind Power Generation Based on SVR Using Characteristics of Wind Direction and Wind Speed)

  • 김영주;정민아;손남례
    • 한국통신학회논문지
    • /
    • 제42권5호
    • /
    • pp.1085-1092
    • /
    • 2017
  • 본 논문은 풍력발전예측의 정확도 개선을 위하여 바람의 특성을 반영한 풍력발전량예측 방법을 제안한다. 제안한 방법은 크게 바람의 특성을 추출하는 부분과 발전량을 예측하는 부분으로 구성된다. 바람의 특성을 추출하는 부분은 발전량, 풍향과 풍속의 상관분석을 이용한다. 풍향과 풍속의 상관관계를 근거로 K-means 방법으로 클러스터링하여 특징 벡터를 추출한다. 예측하는 부분은 임의의 실수값을 예측 할 수 있도록 SVM을 일반화 한 SVR을 이용하여 기계학습을 한다. 기계학습은 바람의 특성을 반영한 제안한 방법과 바람의 특성을 반영하지 않은 기존방법을 비교 실험하였다. 또한, 제안한 방법의 정확도와 타당성을 검증하기 위하여 장소가 상이한 제주도 풍력발전단지 3지역에서 수집된 데이터를 사용하였다. 실험결과, 제안한 방법의 오차가 일반적인 풍력발전예측 오차보다 개선되었다.

초 장단기 통합 태양광 발전량 예측 기법 (Very Short- and Long-Term Prediction Method for Solar Power)

  • 윤문섭;임세령;장한승
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1143-1150
    • /
    • 2023
  • 세계적 기후 위기와 저탄소 정책 이행으로 신재생 에너지에 관한 관심이 높아지고 이와 관련된 산업이 증가하고 있다. 이 중에서 태양 에너지는 고갈되지 않고 오염 물질이나 온실가스를 배출하지 않는 대표적인 친환경 에너지로 주목받고 있으며, 이에 따라 세계적으로 태양광 발전 시설 보급이 증가하고 있다. 하지만 태양광 발전은 지리, 날씨와 같은 환경의 영향을 받기 쉬우므로 안정적인 운영과 효율적인 관리를 위해 정확한 발전량 예측이 중요하다. 하지만 변동성이 큰 태양광 발전을 수학적 통계 기술로 정확한 발전량을 예측하는 것은 불가능하다. 이를 위해서 정확하고 효과적인 예측을 위해 딥러닝 기반의 기술에 관한 연구는 필수적이다. 또한, 기존의 딥러닝을 활용한 예측 방식은 장, 단기적인 예측을 나누어 수행하기 때문에 각각의 예측 결과를 얻기 위한 시간이 길어진다는 단점이 있다. 따라서, 본 연구에서는 시계열 특성을 가진 태양광 발전량 데이터를 사용하여 장단기 통합 예측을 수행하기 위해 순환 신경망의 다대다 구조를 활용한다. 그리고 이를 다양한 딥러닝 모델들에 적용하여 학습을 수행하고 각 모델의 결과를 비교·분석한다.

태양광발전설비 원격 관제를 위한 빅데이터 분석 및 처리 (Big Data Analysis and Processing for Remote Control of PV Facilities)

  • 권준아;김영근;이종찬;김원중
    • 한국전자통신학회논문지
    • /
    • 제13권4호
    • /
    • pp.837-844
    • /
    • 2018
  • 신재생에너지의 발전량 변동에 따라 기존 발전기의 발전량을 증가시키거나 감소시켜야 하는데, 발전량 증 감발에 빠르게 반응을 하는 발전기들은 상대적으로 발전비용이 크므로 태양광발전의 예측 정확도에 따라서 기동발전계획의 비용 효율성이 영향을 받게 된다. 이에 본 논문에서는 태양광 발전량 예측의 불확실성을 최소화하기 위하여 빅데이터 분석 및 처리를 적용한 태양광발전설비 원격관제 시스템을 제안하였다.

ESS의 SOC 균형을 고려한 독립형 마이크로그리드 운영계획 최적화 (Isolated Microgrid Planning Optimization to Maintain SOC Balance in ESS)

  • 이윤철;김정민;류광렬
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2017년도 제56차 하계학술대회논문집 25권2호
    • /
    • pp.168-169
    • /
    • 2017
  • 중앙 전력과 단절된 독립형 마이크로그리드는 발전된 신재생 에너지를 저장하는 ESS의 효율적인 운영을 통해 블랙아웃을 방지하고 디젤 발전기의 발전 비용을 최소화하는 것이 필요하다. 본 논문에서는 기상 정보를 이용하여 신재생 에너지 발전량을 예측하고, 최적화 알고리즘을 이용해 생성된 후보 계획의 평가 시 ESS의 SOC를 유지하지 못하는 경우 페널티를 부여함으로써 신재생 발전량 예측의 오류에 대비하였다. 시뮬레이션 실험을 통해 제안하는 SOC 유지를 고려한 운영 계획 최적화 방안이 기존의 예측 제어 기반 최적화 방안에 비해 블랙아웃을 방지하면서도 디젤 발전 비용을 절감할 수 있음을 확인하였다.

  • PDF

발전량을 이용한 단기 GDP 전망의 유용성 연구 (The Study on the Usefulness of Short-run GDP Forecasting Using Generation)

  • 백광현;김권수;박종인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.808-809
    • /
    • 2007
  • 전력수요는 경기변동과 밀접한 관련성을 가지고 동행적으로 움직이며, 전력자료는 경제자료에 비해 조기 관측되는 선행성이 있다. 본 연구에서는 GDP 전망을 위해 발전량이 유용하게 사용될 수 있는가를 살펴 보았다. 발전량과 GDP의 관련성은 그랜저 인과관계 검정을 통해서 검증해 보았으며, 발전량 자료 취득의 선행성은 선행차수를 변화시켜 보면서 관련성이 어떻게 변하는가를 살펴보았다. 실제 자료를 이용하여 분석하고, 2004년부터 2006년 기간의 전망치를 평가한 결과, 본 논문에서 살펴 보고자 했던 발전량과 GDP 사이에는 아주 높은 관련성이 있음을 확인할 수 있었고 또한 발전량 자료를 이용함으로써 실제로 GDP 전망의 예측력을 상당히 개선시킬 수 있음을 볼 수 있었다. 발전량과 GDP 사이의 관계는 시간변동계수를 가지는 공적분 및 오차수 정모형을 이용하여 모형화하였다.

  • PDF

기후변화 시나리오에 따른 발전용댐의 운영측면 회복탄력성 평가 (Evaluation of Resilience in terms of Hydropower Reservoirs Operation with Climate Change)

  • 김동현;유형주;김종호;이승오
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.337-337
    • /
    • 2022
  • 한반도 기후변화평가보고서에 의하면 집중호우의 빈도와 강도는 1990년대 후반부터 꾸준히 증가하는 경향을 보였고 2020년의 홍수는 예견된 것으로 우려가 현실화 된 사건이라 볼 수 있다. 2020년 홍수에서 알 수 있듯이 강수량과 하천의 유량을 직접 담아내는 국내 댐 시설의 운영은 증가하는 기후변화의 위험에 더욱 중요한 역할을 할 것으로 보인다. 단일 목적으로 건설된 발전용댐의 경우도 다목적댐, 홍수조절댐 등 다양한 수자원시설과 동일한 수계 내에 배치되어 있기 때문에 기후변화 시나리오에 따라 발전용댐의 운영도 변화되어야 할 것이다. 2020년 발전용댐의 다목적 활용 협약 등의 여건 변화는 수자원 활용 측면에서 발전용댐의 역할이 기대되고 있다. 따라서 본 연구에서는 기후변화 시나리오에 따른 발전용댐의 운영안을 회복탄력성 관점에서 제시하고자 한다. 기후변화는 CMIP6 데이터베이스에서 제공하는 18개의 GCMs의 결과를 고려하여 기후변화를 고려하였으며 3개의 미래구간에 대해 100개의 앙상블을 생성하였다. 해당 자료는 LSTM 모형으로 기반으로 댐 유입량을 예측하기 위해 사용되었다. 유입량 예측 결과 0.77~0.89의 NSE 값을 갖는 것으로 평가되었다. 최종적으로 기후변화 시나리오 따라 증가하는 예측된 유입량에 맞춰 댐 모의운영을 수행하였고 회복탄력성, 발전량, 홍수위험 등을 평가하였다. 그 결과 전력생산 관점의 회복탄력성을 유지하는 운영안을 제시하였고, 이를 통해 전력생산량을 증가시키면서 홍수조절 및 용수공급에 기여함을 확인하였다. 향후 방류량에 따라 하류의 구체적인 치수위험평가가 동시에 이뤄진다면 기후변화 시나리오별 발전용댐의 최적 운영기준을 제시할 수 있을 것으로 기대된다.

  • PDF

지도학습에서 다양한 입력 모델에 의한 초단기 태양광 발전 예측 (Forecasting of Short Term Photovoltaic Generation by Various Input Model in Supervised Learning)

  • 장진혁;신동하;김창복
    • 한국항행학회논문지
    • /
    • 제22권5호
    • /
    • pp.478-484
    • /
    • 2018
  • 본 연구는 기온, 강수량, 풍향, 풍속, 습도, 운량, 일조, 일사 등 시간별 기상 데이터를 이용하여, 일사 및 일조 그리고 태양광 발전예측을 하였다. 지도학습에서 입출력패턴은 예측에서 가장 중요한 요소이지만 인간이 직접 결정해야하기 때문에, 반복적인 실험에 의해 결정해야 한다. 본 연구는 일사 및 일조 예측을 위하여 4가지 모델의 입출력 패턴을 제안하였다. 또한, 예측된 일조 및 일사 데이터와 전라남도 영암 태양광 발전소의 발전량 데이터를 사용하여 태양광 발전량을 예측하였다. 실험결과 일조 및 일사 예측에서 모델 4가 가장 예측결과가 우수했으며, 모델 1에 비해 일조의 RMSE는 1.5배 정도 그리고 일사의 RMSE는 3배 정도 오차가 줄었다. 태양광 발전예측 실험결과 일조 및 일사와 마찬가지로 모델 4가 가장 예측결과가 좋았으며, 모델 1 보다 RMSE가 2.7배 정도 오차가 줄었다.

발전용 댐 유입량 예측 정확도 향상을 위한 레이더와 수치예보 예측강우 병합기법 연구 (Study on blending radar and numerical rainfall prediction to improve hydroelectric dam inflow forecasts accuracy)

  • 윤성심;신홍준
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.112-112
    • /
    • 2023
  • 발전용댐의 댐 유입량 예측 및 운영을 위해서 (주)한국수력원자력에서는 수자원통합 운영시스템(Water resources Integrated System, WIOS)을 운영 중에 있다. 해당 시스템에서는 댐 유입량을 예측하기 위해서 기상청 수치예보모델 중 하나인 국지예보모델(Local Data Assimilation and Prediction System, LDAPS)의 예측강우를 수문모형의 입력자료로 활용하고 있으며, 레이더 기반의 초단시간 강우예측 기법을 자체 개발 중에 있다. 기상청 국지예보모델은 강우의 on/off에 대한 정확도는 90%를 상회할 만큼 높으나 정량적인 강우량의 정확도는 매우 낮고, 레이더 기반의 초단시간 예측 강우는 선행 1~2시간 예측에서는 정량적 정확도는 높으나, 그 이후 예측성능이 급격히 떨어지는 경향을 보인다. 따라서 댐 유입량의 정량적 예측 정확도를 확보하기 위해 초단시간 모델과 국지예보모델의 강우예측 결과를 병합(blending)하는 기법을 적용하여 초기 6시간 동안의 예측 성능을 향상시켜야 한다. 본 연구에서는 선행시간 0~6시간에 대해서 병합하는 기법들을 적용하고 평가하고자 한다. 기본적으로 병합은 초단시간 예측강우와 수치예보자료 간 가중치를 통해 수행된다. 일반적으로 초기 1시간 선행시간에서 레이더 기반 예측강우는 완벽한 예측자료(외삽 관측자료의 가중치는 1.0)로 가정하며, tanh 함수를 이용하여 선행시간의 증가에 따라 가중치를 감소시키면서, 6시간 선행시간에서는 수치예보 예측강우가 완벽한 예측자료라고 가정한다. 본 연구에서는 일반적인 병합 방법 외에 병합된 예측강우에 과거 관측강우와 예측강우의 평균편이를 적용하여 보정하는 방법, 사례별 변동성이 큰 병합된 예측강우 특성을 고려하여 병합 가중치를 신뢰도에 따라 가변시키는 방법을 적용하여 평가한다. 이를 통해 댐 유입량 예측에 최적이 되는 병합기법을 선정하고자 한다.

  • PDF

기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발 (Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning)

  • 이승민;이우진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권10호
    • /
    • pp.353-360
    • /
    • 2016
  • 여러 개의 태양전지들이 붙어 있는 태양광 패널을 이용하여 전력을 생산하는 태양광 발전은 최근 신재생 에너지 기술로 빠르게 성장하고 있는 분야이다. 하지만 태양광발전의 단점 중 하나인 불규칙한 전력 생산문제로 인해, 장비 및 패널 결함에 빠르게 대응하지 못하는 문제가 발생한다. 이 연구에서는 다양한 기후데이터와 패널 정보를 이용하여 태양광발전량 예측 방법들을 비교하여 최적의 예측 알고리즘을 평가하고 이를 기반으로 태양광발전소 결함 검출 시스템을 개발하여 국내 태양광 발전소에 적용한 사례를 기술한다.