• Title/Summary/Keyword: 발육모형

Search Result 84, Processing Time 0.026 seconds

부정교합의 유형에 따른 다양한 교정술식의 증례보고

  • Lee, Won-Yu;Lee, Su-Won
    • The Journal of the Korean dental association
    • /
    • v.34 no.3 s.322
    • /
    • pp.160-162
    • /
    • 1996
  • 같은 급의 부정교합이라도 악골의 수직 수평관계, 악골과 치아의 크기에 따라서 여러 유형으로 분류된다. 여러 유형에 따라 치료방법에도 일률적일 수 없고 다양하게 된다. 진단과 치료계획 수립 시에 종종 어려움을 겪게 되는 경우가 있다. 진단의 어려움을 겪는 경우는 발치할 것인지 여부, 어떤 치아를 발치할 것인지, 악궁과 치아크기의 부조화를 어떻게 해소시킬 것인지 들의 결정을 내릴 때이다. 이런 경우 정확한 두부방사선분석 석고모형 분석, 성장과 발육분석에 의하여 판단하며 무엇보다 술자의 능력에 맞게 최선의 방법을 선택하는 것이 중요하다. 부정교합의 유형에 따라 다양한 발치 등 방법을 보고하고자 한다.

  • PDF

Thermal Effects on the Development, Fecundity and Life Table Parameters of Aphis craccivora Koch (Hemiptera: Aphididae) on Yardlong Bean (Vigna unguiculata subsp. sesquipedalis (L.)) (갓끈동부콩에서 아카시아진딧물[Aphis craccivora Koch (Hemiptera: Aphididae)]의 온도발육, 성충 수명과 산란 및 생명표분석)

  • Cho, Jum Rae;Kim, Jeong-Hwan;Choi, Byeong-Ryeol;Seo, Bo-Yoon;Kim, Kwang-Ho;Ji, Chang Woo;Park, Chang-Gyu;Ahn, Jeong Joon
    • Korean journal of applied entomology
    • /
    • v.57 no.4
    • /
    • pp.261-269
    • /
    • 2018
  • The cowpea aphid Aphis craccivora Koch (Hemiptera: Aphididae) is a polyphagous species with a worldwide distribution. We investigated the temperature effects on development periods of nymphs, and the longevity and fecundity of apterous female of A. craccivora. The study was conducted at six constant temperatures of 10.0, 15.0, 20.0, 25, 30.0, and $32.5^{\circ}C$. A. craccivora developed successfully from nymph to adult stage at all temperatures subjected. The developmental rate of A. craccivora increased as temperature increased. The lower developmental threshold (LT) and thermal constant (K) of A. craccivora nymph stage were estimated by linear regression as $5.3^{\circ}C$ and 128.4 degree-days (DD), respectively. Lower and higher threshold temperatures (TL, TH and TH-TL, respectively) were calculated by the Sharpe_Schoolfield_Ikemoto (SSI) model as $17.0^{\circ}C$, $34.6^{\circ}C$ and $17.5^{\circ}C$. Developmental completion of nymph stages was described using a three-parameter Weibull function. Life table parameters were estimated. The intrinsic rate of increase was highest at $25^{\circ}C$, while the net reproductive rate was highest at $20^{\circ}C$. Biological characteristics of A. craccivora populations from different geographic areas were discussed.

Development of Western Cherry Fruit Fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), after Overwintering in the Pacific North West Area of USA (미국 북서부지역에 발생하는 서부양벚과실파리의 발생 월동 후 발생 동태에 관한 연구)

  • Song, Yoo-Han;Ahn, Kwang-Bok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.217-227
    • /
    • 2007
  • The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera:Tephritidae), is the most important pest of cultivated cherries in the Pacific Northwest area of the United States, being widely distributed throughout Oregon, Washington, Montana, Utah, Idaho, Colorado and parts of Nevada. The control of R. indifferens has been based on calendar sprays after its first emergence because of their zero tolerance for quarantine. Therefore, a good prediction model is needed for the spray timing. This study was conducted to obtain the empirical population dynamic information of R. indifferens after overwintering in the major cherry growing area of the Pacific Northwest of the United States, where the information is critically needed to develop and validate the prediction model of the fruit fly. Adult fly populations were monitored by using yellow sticky and emergence traps. Larvae growth and density in fruits were observed by fruit sampling and the pupal growth and density were monitored by pupal collection traps. The first adult was emerged around mid May and a large number of adults were caught in early June. A fruit had more than one larva from mid June to early July. A large number of pupae were caught in early July. The pupae were collected in various period of time to determine the effect of pupation timing and the soil moisture content during the winter. A series of population density data collected in each of the developmental stage were analyzed and organized to provide more reliable validation information for the population dynamic models.

Geographical Shift in Blooming Date of Kiwifruits in Jeju Island by Global Warming (지구온난화에 따른 제주도 내 참다래 개화일의 지리적 이동)

  • Kwon, Young-Soon;Kim, Soo-Ock;Seo, Hyeong-Ho;Moon, Kyung-Hwan;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.179-188
    • /
    • 2012
  • A kiwifruit cultivar 'Hayward' has been grown in Jeju Island where the current climate is suitable for growth and development of this crop. Prediction of the geographical shift in the phenology can help the kiwifruits growers to adapt to the local climate change in the future. Two phenology models (i.e., chill-day and DVS) were parameterized to estimate flowering date of kiwifruits 'Hayward' based on the data collected from field plots and chamber experiments in the southern coastal and island locations in South Korea. Spatio-temporally independent datasets were used to evaluate performance of the two models in predicting flowering date of 'Hayward'. Chill-day model showed better performance than DVS model (2.5 vs. 4.0 days in RMSE). Daily temperature data interpolated at a higher spatial resolution over Jeju Island were used to predict flowering dates of 'Hayward' in 2021-2100 under the A1B scenario. According to the model calculation under the future climate condition, the flowering of kiwifruits shall accelerate and the area with poor flowering might increase due to the warmer winter induced insufficient chilling. Optimal land area for growing 'Hayward' could increase for a while in the near future (2021-2030), whereas such areas could decrease to one half of the current areas by 2100. The geographic locations suitable for 'Hayward' cultivation would migrate from the current coastal area to the elevated mountain area by 250 m.

Application of Non-Parametric Model to Prediction of Heading Date in Direct-Seeded Rice (온도ㆍ일장 2차원 Non-Parametric 모형에 의한 건답직파재배 벼의 출아기 예측)

  • 이변우
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.2
    • /
    • pp.97-106
    • /
    • 1991
  • Two dimensional non-parametric model using daily mean temperature and daylength as predictor variables was established and daily developmental rates (DVR) for the period of seedling emergence to heading were estimated for 26 rice cultivars by using data from field direct seeding dates and short-day treatments experiment carried out at experimental farm of Seoul National University in 1990. Three existing parametric models were tested for the comparision of predictability with non-parametric model. The non-parametric model was found to be superior to parametric models in predicting heading date. The developmetal indice(DVI) at heading date, cummulative DVR's from seedling emergence showed 0.5 to 2.2 percent of coefficient of variations. The non-parametric model revealed errors of 0 to three days in 11 varieties when applied to data independent of those used in estimating DVR.

  • PDF

Modeling for Predicting Yield and $\alpha$-Acid Content in Hop (Humulus lupulus L.) from Meteorological Elements II. A Model for Predicting $\alpha$-Acid Content (기상 요소에 따른 호프(Humulus lupulus L.)이 수량 및 $\alpha$-Acd 함량 예측 모형에 관한 연구 II $\alpha$-Acid 함량 예측 모형)

  • 박경열
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.4
    • /
    • pp.323-328
    • /
    • 1988
  • The hop alpha-acid content prediction model developed with meteorological elements in Hoeongseong was Y=28.369-0.003X$_1$+1.558X$_2$-1.953X$_3$-0.335X$_4$-0.003X$\sub$5/-0.119X$\sub$6/, with MSEp of 0.004, Rp$^2$ of 0.9987, Rap$_2$ of 0.9949 and Cp of 7.00. The total sunshine hours (X$_1$), the maximum temperature (X$_3$) and the total precipitation (X$\sub$5/) at flowering stage. the maximum temperature at flower bud differentiation stage (X$_4$) and the maximum temperature at cone ripening stage (X$\sub$6/) influenced on hop alpha .acid content as decrement weather elements. The maximum temperature at cone development stage(X$_2$) effected on ${\alpha}$-acid content as increment weather element.

  • PDF

Study on estimating skeletal maturity of hand-wrist using multiple regression model (다중회귀모형을 이용한 수완부 골성숙도의 추정에 관한 연구)

  • Kim, Kyung-Ho;Yu, Hyung-Seog;Kim, Suk-Hyun
    • The korean journal of orthodontics
    • /
    • v.27 no.5 s.64
    • /
    • pp.853-864
    • /
    • 1997
  • The evaluation of growth potency can be done with many physiologic indicators. It has been well known that skeletal maturity has a close relation with both sexual maturity and somatic maturity, but the correlation between skeletal maturity and dental maturity was believed to be less certain. But, recent studies show that specific teeth, including lower canines, present close correlations with skeletal maturity. So, in this study, we studied hand-wrist X-ray films and orthopantomograms of 387 Korean boys and girls aged from 7 to 15; the purpose was to determine skeletal and dental maturity, and to find out a new method to estimate individual skeletal maturity using multiple-regression model, without the help of hand-wrist X-ray film. As a result of this study, followings were observed. 1. The following multiple-regression model can estimate skeletal maturity index (SMI) with 84% of accuracy, and regression coefficient of chronologic age, sex and lower canine show statistical significance. SMI = 0.60 x chronologic age - 1.67 x sex$^{**}$ + 0.88 x lower canine$^{*}$ - 0.05 x lower 2nd molar$^{*}$ - 10.3 $^{*}$ : mean age corresponding each developing stage, $^{**}$ : male=1, femal=0 2. The following multiple-regression model can estimate skeletal age with 87% of accuracy, and regression coefficient of chronologic age, sex and lower canine show statistical significance. Skeletal age = 0.75 x chronologic age - 0.55 x sex$^{**}$ + 0.71 x lower canine$^{*}$ - 0.09 x lower 2nd molar* -5.77 $^{*}$ : mean age corresponding each developing stage, $^{**}$ : male=1, femal=0

  • PDF

Assessment of Uterine Internal Temperature according to the Time of Convex Probe Injection using a Self-made Uterine Model Phantom (자체 제작한 자궁모형팬텀을 이용한 Convex probe 주사시간에 따른 자궁내부온도 평가)

  • Lee, Hyun-Kyung;Heo, Yeong-Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.895-900
    • /
    • 2019
  • Ultrasound is known to be harmless to the human body and is widely used in obstetrics and gynecology to confirm the diagnosis and development status of fetus. Diagnosis Although long - term use of ultrasound may cause changes in body temperature, studies on the uterine temperature changes due to ultrasound have been lacking. The purpose of this study was to investigate the change of temperature according to ultrasonic scanning time using a self - produced uterine model phantom. Ultrasound equipment and a 4MHz convex probe were used to construct the uterine model phantom similar to the human uterus using acrylic and pig uterus, which are tissue equivalents. Three probe type thermometers were installed to measure the inside of the acrylic water tank, the uterus, and the atmospheric temperature. The temperature of the uterine phantom was ascertained by measuring the temperature of the subject for 6 hours, 361 times. In this study, the possibility of human body temperature elevation due to ultrasound could be confirmed and this study will be used as the basic data of ultrasonic heat absorption study.

Developmental Rate Equations for Predicting Bud Bursting Date of 'Campbell Early' (Vitis labrusca) Grapevines (발육 속도 모델을 이용한 포도 '캠벨얼리'의 발아기 예측)

  • Yun, Seok-Kyu;Shin, Yong-Uk;Yun, Ik-Koo;Nam, Eun-Young;Han, Jeom-Wha;Choi, In-Myung;Yu, Duk-Jun;Lee, Hee-Jae
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.181-186
    • /
    • 2011
  • To predict the bud bursting date of 'Campbell Early' grapevines, the bud developmental rate (DVR) models were constructed. The DVRs for bud bursting were calculated from the demanded times at controlled air temperatures. The DVRs were examined on the 'Campbell Early' grapevines incubated in three different temperatures at 4.6, 11.8, and $16.6^{\circ}C$. The DVR increased exponentially or linearly on the air temperature with a slope of about 0.0019. The DVR equations were computed as $DVR=0.0249+0.0020e^{0.1654x}$ or DVR = 0.0019x + 0.0187. These DVR equations offered developmental indices and predicted dates for bud bursting with air temperature data. The DVR equations were validated to the bud bursting data observed in the field. When bud bursting dates were calculated with daily temperature data, the root mean squared error (RMSE) between the observed and the predicted dates was less than 4 days. When those were calculated with hourly temperature data, on the other hand, the RMSE was less than 3 days. These results suggest that the DVR models are useful to predict bud bursting date of 'Campbell Early' grapevines.

Life Table Analysis of the Cabbage Aphide, Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae), on Tah Tsai Chinese Cabbages (다채를 기주로 양배추가루진딧물[Brevicoryne brassicae (Linnaeus)]의 생명표 분석)

  • Kim, So Hyung;Kim, Kwang-Ho;Hwang, Chang-Yeon;Lim, Ju-Rak;Kim, Kang-Hyeok;Jeon, Sung-Wook
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • Life table analysis and temperature-dependent development experiments were conducted to understand the biological characteristics of the cabbage aphid, Brevicoryne brassicae (Linnaeus) on detached Tah Tsai Chinese cabbage (Brassica campestris var. narinosa) leaves at seven constant temperatures (15, 18, 21, 24, 27, 30 and $33{\pm}1^{\circ}C$; $65{\pm}5%$ RH; 16L:8D). Mortality was lowest at $24^{\circ}C$ with 18% and 0% at $1^{st}{\sim}2^{nd}$ and $3^{rd}{\sim}4^{th}$ nymphal stages, respectively. The developmental period of $1^{st}{\sim}2^{nd}$ nymphal stage was 8.4 days at $18^{\circ}C$, and it decreased with increasing temperature. The developmental period of the $3^{rd}{\sim}4^{th}$ nymphal stage was 6.7 days at $18^{\circ}C$. The lower threshold temperature calculated using a linear model was $7.8^{\circ}C$, and the effective accumulative temperature was 120.1DD. Adult longevity was 14.9 days at $21^{\circ}C$, and total fecundity was observed 58.5 at $24^{\circ}C$. According to the life table, the net reproduction rate was 47.5 at $24^{\circ}C$, and the intrinsic rate of increase and the finite rate of increase were 0.36 and 1.43, respectively, at $27^{\circ}C$. The doubling time was 1.95d at $27^{\circ}C$, and mean generation time was 7.43d at $30^{\circ}C$.