• Title/Summary/Keyword: 발육모형

Search Result 84, Processing Time 0.019 seconds

Effects of Temperature on the Development and Fecundity of Maruca vitrata (Lepidoptera: Crambidae) (콩명나방(Maruca vitrata) (나비목: 포충나방과) 발육과 산란에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung;Si-Woo, Lee
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.563-575
    • /
    • 2022
  • Maruca vitrata is one of important pests in leguminous crops, especially red bean. We investigated the effects of temperature on development of each life stage, adult longevity and fecundity of M. vitrata for understanding the biological characteristics of the insect species at eight constant temperatures of 13, 16, 19, 22, 25, 28, 31, and 34℃. Eggs hatched successfully at all temperature subjected and larvae successfully developed to the adult stage from 16℃ to 31℃. The developmental period of egg decreased up to 31℃ and after then increased. The developmental period of larva and pupa, and adult longevity of M. vitrata decreased with increasing temperature. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. vitrata were estimated by linear regression as 12.8℃ and 280.8DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 14.2℃ and 31.9℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. vitrata was 17.7℃. In addition, we constructed the oviposition models of adult, using the investigated adult traits including survival, longevity, oviposition period and fecundity. Temperature-dependent development models and adult oviposition models will be helpful to understand the population dynamics of M vitrata and to establish the strategy of integrated pest management in legume crops.

Effects of Temperature on the Development and Reproduction of Matsumuraeses phaseoli (Lepidoptera: Tortricidae) (팥나방(Matsumuraeses phaseoli)의 발육과 생식에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.461-473
    • /
    • 2022
  • Matsumuraeses phaseoli is one of important pests in soybean crops, especially adzuki beans. We investigated the effects of temperature on development of each life stage, adult longevity and fecundity of M. phaseoli for understanding the biological characteristics of M. phaseoli at ten constant temperatures of 7, 10, 13, 16, 19, 22, 25, 28, 31, and 34℃. Eggs hatched successfully at all temperature subjected except 7℃ and 34℃. The developmental period of each life stage and adult longevity of M. phaseoli decreased as temperature increased. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of M. phaseoli were estimated by linear regression as 9.04℃ and 422.97DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 20.0℃ and 32.3℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of M. phaseoli was 12.3℃. We constructed the adult oviposition model of M. phaseoli using adult survivorship and fecundity. Temperature-dependent development models and adult oviposition models will be helpful to understand the population dynamics of M. falcana and to establish the strategy of integrated pest management in soybean fields.

Temperature-dependent Development Model of Larvae of Mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae) (갈색거저리(Tenebrio molitor L.) 유충의 온도발육 모형)

  • Koo, Hui-Yeon;Kim, Seon-Gon;Oh, Hyung-Keun;Kim, Jung-Eun;Choi, Duck-Soo;Kim, Do-Ik;Kim, Iksoo
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.387-394
    • /
    • 2013
  • The developmental times of mealworm beetle larvae, Tenebrio molitor were studied at six temperatures ranging from 15 to $30^{\circ}C$ with 60~70% RH, and a photoperiod of 14L:10D. Mortality of larval period was very low at 17 and $20^{\circ}C$ but did not die over $22^{\circ}C$. Developmental time of larva was decreased with increasing temperature. The total developmental time of T. molitor larvae was longest at $17^{\circ}C$ (244.3 days) and shortest at $30^{\circ}C$ (110.8 days). Egg and larvae were not developed at $15^{\circ}C$. The lower developmental threshold and effective accumulative temperatures for the total larval stages were $6.0^{\circ}C$ and 2564.1 degree-days, respectively. The relationship between developmental rate and temperature was fitted by a linear model and nonlinear model of Logan-6($r^2$=0.95). The distribution of completion of each development stage was well described by the 2-parameter Weibull function ($r^2$=0.8502~0.9390).

Development Time and Development Model of the Green Peach Aphid, Myzus persicae (복숭아혹진딧물(Myzus persicae)의 발육과 발육모형)

  • Kim Ji-Soo;Kim Tae-Heung
    • Korean journal of applied entomology
    • /
    • v.43 no.4 s.137
    • /
    • pp.305-310
    • /
    • 2004
  • The development of Myzus persicae (Sulzer) was studied at temperatures ranging from 15 to $32.5^{\circ}C$ under $70{\pm}5\%$ RH, and a photoperiod of 16:8 (L:D). Mortality of 1st-2nd nymph was higher than that of 3rd-4th nymph at the most temperature ranges whereas at high temperature of $32.5^{\circ}C$, more 3-4nymph stage individuals died. The total developmental time ranged from 12.4 days at $15^{\circ}C$ to 4.9 days at $27.5^{\circ}C$, suggesting that higher the temperature, faster the development. However, at higher end temperature ranges of 30 and $32.5^{\circ}C$, the development took 5.0 and 6.3 days, respectively. The lower developmental threshold temperature and effective accumulative temperatures for the total immature stage were $4.9^{\circ}C$ and 116.5 day-degrees. The nonlinear shape of temperature related development was well described by the modified Sharpe and DeMichele model. When the normalized cumulative frequency distributions of developmental times for each life stage were fitted to the three-parameter Weibull function, attendance of shortened developmental times was apparent with pre-nymph, post-nymph, and total nymph stages in descending order. The coefficient of determination $r^2$ ranged between 0.87 and 0.94.

Temperature-dependent Development and Its Model of the Greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae) (보리두갈래진딧물 [Schizaphis graminum (Rondani)]의 온도발육과 발육모형)

  • Lee, Jang-Ho;Kim, Tae-Heung;Kim, Ji-Soo;Hwangn, Chang-Yeon;Lee, Sang-Guei
    • Korean journal of applied entomology
    • /
    • v.46 no.2
    • /
    • pp.213-219
    • /
    • 2007
  • The development of Schizaphis graminum (Rondani) was studied at various constant temperatures ranging from 15 to $32.5^{\circ}C$, with $65{\pm}5%$ RH, and a photoperiod of 16L:8D. Mortality of the $1_{st}-2_{nd}\;and\;the\;3_{rd}-4_{th}$ stage nymphs were similar at most temperature ranges while at high temperature of $32.5^{\circ}C$, more $3_{rd}-4_{th}$ stage individuals died. The total developmental time ranged from 13.8 days at $15^{\circ}C$ to 4.9 days at $30.0^{\circ}C$ suggesting that the higher the temperature, the faster the development. However, at higher end temperature of $32.5^{\circ}C$ the development took 6.4 days. The lower developmental threshold temperature and effective accumulative temperatures for the total immature stage were $6.8^{\circ}C$ and 105.9 day-degrees, respectively and the nonlinear shape of temperature related development was well described by the modified Sharpe and DeMichele model. The normalized cumulative frequency distributions of developmental period for each life stage were fitted to the three-parameter Weibull function. The attendance of shortened developmental times was apparent with $1_{st}-2_{nd}\;nymph,\;3_{rd}-4_{th}$ nymph, and total nymph stages in descending order. The coefficient of determination $r^2$ ranged between 0.80 and 0.87.

Developmental Ecology and Temperature-dependent Development Model of Scotinophara lurida (Heteroptera: Pentatomidae) (먹노린재(Scotinophara lurida)의 발생생태와 온도의존 발육모형)

  • Choi, Duck-Soo;Kim, Hyo-Jeong;Oh, Sang-A;Lee, Jin-Hee;Cho, A-Hae;Ma, Kyung-Cheol
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.2
    • /
    • pp.251-261
    • /
    • 2020
  • The developmental ecology and temperature-dependent growth model were calculated to develop the Scotinophara lurida control technology, which is mainly affected by environmentally friendly rice cultivation. The survival rate of S. lurida after overwintering in 2019 showed that 167 of 224 survived and the survival rate was 72.8%. Overwintering adult of S. lurida occur in rice fields in mid-June, spawn in early July, and first-generation adults develop in mid-August. In order to determine the temperature-dependent growth model, the growth periods by temperature and development stage were investigated in a incubator at 18, 21, 24, 27, 30℃ and 14L: 10D. The period from egg to adult at the temperature of 18, 21, 24, 27, 30℃ was 119.8, 73.1, 53.5, 39.4, and 82.0 days, respectively. The best development temperature was at 27℃. The regression curve was obtained by analyzing the relationship between temperature and growth rate using the Excell program, and the base temperature threshold and effective cumulative temperature for each development stage were calculated. From eggs to 5 nymphs of S. lurida the base temperature threshold was 17.9℃ and the effective cumulative temperature was 380.2 DD.

Effects of Temperature on the Development and Reproduction of Ostrinia scapulalis (Lepidoptera: Crambidae) (콩줄기명나방(Ostrinia scapulalis) (나비목: 포충나방과)의 발육과 산란에 미치는 온도의 영향)

  • Jeong Joon, Ahn;Eun Young, Kim;Bo Yoon, Seo;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.577-590
    • /
    • 2022
  • Ostrinia scapulalis is one of important pests in leguminous crops, especially red bean. In order to understand the biological characteristics of the insect, we investigated the effects of temperature on development of each life stage, adult longevity and fecundity of O. scapulalis at eleven constant temperatures of 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, and 36℃. Eggs and larvae successfully developed next life stage at most temperature subjected except 7, 10 and 13℃. The developmental period of egg, larva and pupa decreased as temperature increased. Lower and higher threshold temperature (TL and TH) were calculated by the Lobry-Rosso-Flandrois (LRF) and Sharpe-Schoolfield-Ikemoto (SSI) models. The lower developmental threshold (LDT) and thermal constant (K) from egg hatching to adult emergence of O. scapulalis were estimated by linear regression as 13.5℃ and 384.5DD, respectively. TL and TH from egg hatching to adult emergence using SSI model were 19.4℃ and 39.8℃. Thermal windows, i.e., the range in temperature between the minimum and maximum rate of development, of O. scapulalis was 20.4℃. Adults produced viable eggs at the temperature range between 16℃ and 34℃, and showed a maximum number, ca. 416 offsprings, at 25℃. Adult models including aging rate, age-specific survival rate, age-specific cumulative oviposition, and temperature-dependent fecundity were constructed, using the temperature-dependent adult traits. Temperature-dependent development models and adult oviposition models will be useful components to understand the population dynamics of O. scapulalis and will be expected using a basic data for establishing the strategy of integrated pest management in leguminous crops.

Comparison of Development times of Myzus persicae (Hemiptera:Aphididae) between the Constant and Variable Temperatures and its Temperature-dependent Development Models (항온과 변온조건에서 복숭아혹진딧물의 발육비교 및 온도 발육모형)

  • Kim, Do-Ik;Choi, Duck-Soo;Ko, Suk-Ju;Kang, Beom-Ryong;Park, Chang-Gyu;Kim, Seon-Gon;Park, Jong-Dae;Kim, Sang-Soo
    • Korean journal of applied entomology
    • /
    • v.51 no.4
    • /
    • pp.431-438
    • /
    • 2012
  • The developmental time of the nymphs of Myzus persicae was studied in the laboratory (six constant temperatures from 15 to $30^{\circ}C$ with 50~60% RH, and a photoperiod of 14L:10D) and in a green-pepper plastic house. Mortality of M. persicae in laboratory was high in the first(6.7~13.3%) and second instar nymphs(6.7%) at low temperatures and high in the third (17.8%) and fourth instar nymphs(17.8%) at high temperatures. Mortality was 66.7% at $33^{\circ}C$ in laboratory and $26.7^{\circ}C$ in plastic house. The total developmental time was the longest at $14.6^{\circ}C$ (14.4 days) and shortest at $26.7^{\circ}C$ (6.0 days) in plastic house. The lower threshold temperature of the total nymphal stage was $3.0^{\circ}C$ in laboratory. The thermal constant required for nymphal stage was 111.1DD. The relationship between developmental rate and temperature was fitted nonlinear model by Logan-6 which has the lowest value on Akaike information criterion (AIC) and Bayesian information criterion (BIC). The distribution of completion of each developmental stage was well described by the 3-parameter Weibull function ($r^2=0.95{\sim}0.97$). This model accurately described the predicted and observed occurrences. Thus the model is considered to be good for use in predicting the optimal spray time for Myzus persicae.

Temperature-driven Models of Lipaphis erysimi (Hemiptera: Aphididae) Based on its Development and Fecundity on Cabbage in the Laboratory in Jeju, Korea (양배추에서 무테두리진딧물의 온도의존 발육 및 산자 단위모형)

  • Oh, Sung Oh;Kwon, Soon Hwa;Kim, Tae Ok;Park, Jeong Hoon;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • This study was conducted to develop temperature-driven models for a population model of turnip aphid, Lipaphis erysimi: nymphal development rate models and apterious adult's oviposition (larviparous) model. Nymphal development and the longevity and fecundity of adults were examined on cabbage at six constant temperatures (10, 15, 20, 25, 30, $35{\pm}1^{\circ}C$, 16L:8D). L. erysimi nymphs did not survive at $10^{\circ}C$. Development time of nymphs increased with increasing temperature up to $30^{\circ}C$ and thereafter slightly decreased, ranging from 18.5 d at $15^{\circ}C$ to 5.9 d at $30^{\circ}C$. The lower threshold temperature and thermal constant were estimated as $7.9^{\circ}C$ and 126.3 degree days, respectively. The nonlinear model of Lactin 2 fitted well for the relationship between the development rate and temperature of small (1+2 instar), large (3+4 instar) and total nymph (all instars). The Weibull function provided a good fit for the distribution of development times of each stage. Temperature affected the longevity and fecundity of L. erysimi. Adult longevity decreased as the temperature increased and ranged from 24.4 d at $20^{\circ}C$ to 16.4 d at $30.0^{\circ}C$ with abnormal longevity 18.2 d at $15^{\circ}C$, which was used to estimate adult aging rate model for the calculation of adult physiological age. L. erysimi showed a maximum fecundity of 91.6 eggs per female at $20^{\circ}C$. In this study, we provided three temperature-dependent components for an oviposition model of L. erysimi: total fecundity, age-specific cumulative oviposition rate, and age-specific survival rate.

Population Phenology and an Early Season Adult Emergence model of Pumpkin Fruit Fly, Bactrocera depressa (Diptera: Tephritidae) (호박과실파리 발생생태 및 계절초기 성충우화시기 예찰 모형)

  • Kang, Taek-Jun;Jeon, Heung-Yong;Kim, Hyeong-Hwan;Yang, Chang-Yeol;Kim, Dong-Soon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.4
    • /
    • pp.158-166
    • /
    • 2008
  • The pumpkin fruit fly, Bactrocera depressa (Tephritidae: Diptera), is one of the most important pests in Cucurbitaceae plants. This study was conducted to investigate the basic ecology of B. depressa, and to develop a forecasting model for predicting the time of adult emergence in early season. In green pumpkin producing farms, the oviposition punctures caused by the oviposition of B. depressa occurred first between mid- and late July, peaked in late August, and then decreased in mid-September followed by disappearance of the symptoms in late September, during which oviposition activity of B. depressa is considered active. In full-ripened pumpkin producing farms, damaged fruits abruptly increased from early Auguest, because the decay of pumpkins caused by larval development began from that time. B. depressa produced a mean oviposition puncture of 2.2 per fruit and total 28.8-29.8 eggs per fruit. Adult emergence from overwintering pupae, which was monitored using a ground emergence trap, was first observed between mid- and late May, and peaked during late May to early June. The development times from overwintering pupae to adult emergence decreased with increasing temperature: 59.0 days at $15^{\circ}C$, 39.3 days at $20^{\circ}C$, 25.8 days at$25^{\circ}C$ and 21.4 days at $30^{\circ}C$. The pupae did not develop to adult at $35^{\circ}C$. The lower developmental threshold temperature was calculated as $6.8^{\circ}C$ by linear regression. The thermal constant was 482.3 degree-days. The non-linear model of Gaussian equation well explained the relationship between the development rate and temperature. The Weibull function provided a good fit for the distribution of development times of overwintering pupae. The predicted date of 50% adult emergence by a degree-day model showed one day deviation from the observed actual date. Also, the output estimated by rate summation model, which was consisted of the developmental model and the Weibull function, well pursued the actual pattern of cumulative frequency curve of B. depressa adult emergence. Consequently, it is expected that the present results could be used to establish the management strategy of B. depressa.