• Title/Summary/Keyword: 발열 의류

Search Result 23, Processing Time 0.014 seconds

Far-infrared Emission Characteristics of ZrC Imbedded Heat Storage Knitted Fabrics for Emotional Garment (탄화지르코늄 함유 감성의류용 축열/발열 편물의 원적외선 방출특성)

  • Kim, Hyun-Ah
    • Science of Emotion and Sensibility
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2015
  • This paper investigated far-infrared emission characteristics of ZrC imbedded heat storage knitted fabrics for emotional garment. For this purpose, ZrC imbedded heat storage PET was spun with high viscosity PET imbedded ZrC powder on the core part and low viscosity PET on the sheath part by conjugated spinning method. Ingredient analysis and far-infrared emission characteristics assessment of spun filament were carried out by EDS and FT-IR spectrometer. Two kinds of knitted fabrics were made using texturized ZrC imbedded PET for measuring thermal characteristics of ZrC imbedded heat storage PET. Zr peak was certified by EDS measurement and it was confirmed that content of Zr was 19.29%. Far-infrared analysis revealed that emission power at the range of wavelength, $5{\sim}20{\mu}m$ was $3.65{\times}10^2W/m^2$, and emissivity was 0.906. Heat storage analysis by KES-F7 system revealed that $Q_{max}$ of ZrC imbedded PET knitted fabric was lower than that of regular PET one and warmth keepability rate was higher than that of regular one, which means that ZrC imbedded PET knitted fabric has heat storage property. Thermal conductivity of ZrC imbedded PET knitted fabric was higher than that of regular PET one which was caused by high thermal conductivity of Zr itself. Hand property of ZrC imbedded knitted fabric was not inferior compared to regular PET knitted fabric, which preferably was found to be dependent on knit structure and surface property.

Evaluation of Thermoregulatory Properties of Thermal Underwear Named as 'Heating Underwear' using Thermal Manikin and Human Performance Test ('발열내복'이라 광고되는 시판 기능성 보온내복의 써멀 마네킹과 인체 착용 실험을 통한 체온조절 성능 평가)

  • Lee, Hyo-Hyun;Lee, Young-Ran;Kim, Ji-Eun;Kim, Siyeon;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.17 no.4
    • /
    • pp.657-665
    • /
    • 2015
  • This study evaluated the thermoregulatory properties of functional thermal underwear ('heating underwear') in markets using a thermal manikin and human wear trials. One ordinary thermal underwear (ORD) and two functional thermal underwear (HEAT1 and HEAT2; manufactured goods, HEAT1: moisture absorbing heat release mechanism, HEAT2: heat storage, release mechanism) were chosen. Thermo-physiological and subjective responses were evaluated at an air temperature of $5.0{\pm}0.5^{\circ}C$ and air humidity of $30{\pm}5%RH$ with five male subjects ($21.6{\pm}1.3yr$ in age, $178.0{\pm}5.9cm$ in height, $68.2{\pm}5.9kg$ in body mass). Experimental conditions consisted of four ensembles that included winter clothes (Control: no underwear, ORD, HEAT1, HEAT2). Water-vapor resistance was greater in fabric of HEAT1 than others. The results were: 1) Total thermal insulation (IT) using a thermal manikin were not greater for HEAT1 (0.860clo) and HEAT 2 (0.873clo) than for ORD (0.886clo). 2) There were no significant differences in rectal temperature, mean skin temperature, heart rate and total body mass loss between the four conditions. Microclimate clothing temperature on the back was greater for ORD than for HEAT1 and HEAT2. Subjects felt more comfortable with HEAT1 than for others at rest. HEAT2 was higher in microclimate humidity when compared to other conditions. The results suggest that thermoregulatory properties of 'heating underwear' in market did not differ from those of ordinary thermal underwear in terms of total thermal insulation and thermoregulatory responses in a cold environment.

Development of Smart Switchgear for Versatile Ventilation Garments: Optimum Diameter and Voltage Application Unit Time of One-way Shape Memory Alloy Wire for a Bi-directional Actuator (가변 통기성 의복을 위한 스마트 개폐장치 개발: 양방향 작동 액추에이터 제작을 위한 일방향 형상기억합금 와이어의 최적 직경 및 전압인가 단위시간의 도출)

  • Kim, Sanggu;Kim, Minsung;Yoo, Shinjung
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2018
  • The study figured out the operational conditions of a two-way movement actuator made of one-way shape memory alloy (OWSMA) for versatile ventilation intelligent garments. To develop a low-power actuator that consumes energy only when a garment changes its form such as opening and closing, multiple channels of OWSMA were used, and optimum diameter of the wires was examined. For the switch device, optimum voltage application unit time was determined. Optimum diameter of OWSMA wire was determined by applying 3.7V to the pre-determined candidate diameters, which demonstrated two-way operation in previous studies. In order to evaluate the optimum voltage application time, the internal diameter of the actuator was measured while increasing and decreasing by 50 ms from the unit time of voltage application. Delay time under two-way operation of the actuator was measured to minimize interference caused by heat between channels. Power of 3.7V was applied to OWSMA for assessment of optimal time, and the whole process from heating to cooling was video-recorded with a thermal image camera to determine the point of time at which the temperature of OWSMA wire dropped below the phase transformation temperature. The results showed that $0.4{\Phi}$ was the most suitable diameter, and the optimum unit time of voltage applied to open and close the actuator was 4100ms. It was also shown that the delay time should be more than 1.8 seconds between two-way operations of the actuator.