• Title/Summary/Keyword: 발사준비

Search Result 65, Processing Time 0.026 seconds

Development Trend of Korean Staged Combustion Cycle Rocket Engine (한국형 다단연소사이클 로켓엔진 개발 동향)

  • Kim, Chae-hyoung;Han, Yeoung Min;Cho, Namkyung;Kim, Seung-Han;Yu, Byungil;Lee, Kwang-Jin;So, Younseok;Woo, Seongphil;Im, Ji-Hyuk;Hwang, Chang Hwan;Lee, Jungho;Kim, Jin-han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.79-87
    • /
    • 2017
  • Korea Aerospace Research Institute has being developed a staged combustion cycle rocket (SCCR) engine with high specific impulse to send a 3-ton class satellite into geostationary orbit while conducted Korean Space Launch Vehicle (KSLV) II project. The SCCR engine is different from the KSLV-II engine, which is open cycle engine using a gas-generator. The SCCR engine with closed cycle is composed of a pre-burner, a turbo pump, and a main combustor. The technology demonstration model (TDM0) was assembled and tested in the 7ton-class engine combustion test facility of Naro Space Center, and the combustion test was successfully conducted. Afterward engine-shaped SCCR engine model (TDM1) is being designed and developed for the next combustion test.

  • PDF

A Study on the Countermeasures of Iskander (이스칸데르 미사일 대응방안 연구)

  • Kim, Sea Ill;Shin, Jin
    • Convergence Security Journal
    • /
    • v.19 no.3
    • /
    • pp.109-115
    • /
    • 2019
  • The North's short-range projectiles and missiles are the Iskander-class missiles of the S-300 series, with a range of 270-420 kilometers and an altitude of 40-50 kilometers, making it very difficult to respond with South Korea's detection radar or striking weapons. The North's handling of the Seoul sea of fire also makes it very urgent for the South to deploy the weapons to power or introduce them as soon as possible, as it can identify its intention to strike the Seoul metropolitan area by equipping such short-range rockets and missiles with nuclear or chemical weapons. We will be prepared to prep are for reckless provocations by securing our own technology by continuously developing the Korean missile defense system and striking system, Kill Chain, which is designed to defend short-range missiles in the long-term, and securing our own technology.

Missions and User Requirements of the 2nd Geostationary Ocean Color Imager (GOCI-II) (제2호 정지궤도 해양탑재체(GOCI-II)의 임무 및 요구사양)

  • Ahn, Yu-Hwan;Ryu, Joo-Hyung;Cho, Seong-Ick;Kim, Suk-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.277-285
    • /
    • 2010
  • Geostationary Ocean Color Imager(GOCI-I), the world's first space-borne ocean color observation geostationary satellite, will be launched on June 2010. Development of GOCI-I took about 6 years, and its expected lifetime is about 7 years. The mission and user requirements of GOCI-II are required to be defined at this moment. Because baseline of the main mission of GOCI-II must be defined during the development time and early operational period of GOCI-I. The main difference between these missions is the global-monitoring capability of GOCI-II, which will meet the necessity of the monitoring and research on climate change in the long-term. The user requirements of GOCI-II will have higher spatial resolution, $250m{\times}250m$, and 12 spectral bands to fulfill GOCI-I's user request, which could not be implemented on GOCI-I for technical reasons. A dedicated panchromatic band will be added for the nighttime observation to obtain fishery information. GOCI-II will have a new capability, supporting user-definable observation requests such as clear sky area without clouds and special-event areas, etc. This will enable higher applicability of GOCI-II products. GOCI-II will perform observations 8 times daily, the same as GOCI-I's. Additionally, daily global observation once or twice daily is planned for GOCI-II. In this paper, we present an improved development and organization structure to solve the problems that have emerged so far. The hardware design of the GOCI-II will proceed in conjunction with domestic or foreign space agencies.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

Conjunction Assessments of the Satellites Transported by KSLV-II and Preparation of the Countermeasure for Possible Events in Timeline (누리호 탑재 위성들의 충돌위험의 예측 및 향후 상황의 대응을 위한 분석)

  • Shawn Seunghwan Choi;Peter Joonghyung Ryu;John Kim;Lowell Kim;Chris Sheen;Yongil Kim;Jaejin Lee;Sunghwan Choi;Jae Wook Song;Hae-Dong Kim;Misoon Mah;Douglas Deok-Soo Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.118-143
    • /
    • 2023
  • Space is becoming more commercialized. Despite of its delayed start-up, space activities in Korea are attracting more nation-wide supports from both investors and government. May 25, 2023, KSLV II, also called Nuri, successfully transported, and inserted seven satellites to a sun-synchronous orbit of 550 km altitude. However, Starlink has over 4,000 satellites around this altitude for its commercial activities. Hence, it is necessary for us to constantly monitor the collision risks of these satellites against resident space objects including Starlink. Here we report a quantitative research output regarding the conjunctions, particularly between the Nuri satellites and Starlink. Our calculation shows that, on average, three times everyday, the Nuri satellites encounter Starlink within 1 km distance with the probability of collision higher than 1.0E-5. A comparative study with KOMPSAT-5, also called Arirang-5, shows that its distance of closest approach distribution significantly differs from those of Nuri satellites. We also report a quantitative analysis of collision-avoiding maneuver cost of Starlink satellites and a strategy for Korea, being a delayed starter, to speed up to position itself in the space leading countries. We used the AstroOne program for analyses and compared its output with that of Socrates Plus of Celestrak. The two line element data was used for computation.