• 제목/요약/키워드: 발광소멸시간

검색결과 14건 처리시간 0.028초

Time-resolved Photoluminescence Study of Seven-stacked InAs/InAlGaAs Quantum Dots

  • 오재원;권세라;류미이;조병구;김진수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.265-265
    • /
    • 2011
  • 자발형성법으로 InP (001) 기판에 성장한 InAs/InAlGaAs 양자점(QDs: quantum dots)의 광학적 특성을 PL (photoluminescence)와 TRPL (time-resolved PL)을 이용하여 분석하였다. InAs QDs 시료는 single layer InAs QDs (QD1)과 7-stacked InAs QDs (QD2)를 사용하였다. 두 시료 모두 저온 (10 K)에서 1,320 nm에서 PL 피크가 나타나고, 온도가 증가함에 따라 PL 피크는 적색편이 (red-shift)를 보였다. 양자점의 온도를 10 K에서 300 K까지 증가하였을 때 QD1은 178 nm 적색편이 하였으며, PL 스펙트럼 폭은 온도가 증가함에 따라 증가하였다. 그러나 QD2는 264 nm 적색편이를 보였으며 PL 스펙트럼의 폭은 QD1 시료와 반대로 온도가 증가함에 따라 감소하였다. QD2의 아주 넓은 PL 스펙트럼 폭과 매우 큰 적색편이는 InAs 양자점 크기의 변화가 QD1에 비해 훨씬 크기 때문이다. QD2의 경우 InAs 층수(layer number)가 증가함에 따라 InAs QD의 크기가 점차 증가하므로 QD 크기의 변화가 single layer인 QD1 시료보다 훨씬 크다. QD1의 PL 소멸은 파장이 증가함에 따라 점차 느려지다가 PL 피크 근처에서 가장 느린 소멸 곡선을 보이고, 파장이 더 증가하였을 때 PL 소멸은 점차 빠르게 소멸하였다. 그러나 QD2의 PL 소멸곡선은 파장이 증가함에 따라 점차 빠르게 소멸하였다. 이것은 QD2는 양자점 크기의 변화가 매우 크기 때문에 (lateral size=18~29 nm, height=2.8~5.9 nm) 방출파장이 증가함에 따라 양자점 사이의 파동함수의 겹침이 증가하여 캐리어의 이완이 증가하기 때문으로 설명된다. 온도에 따른 TRPL 결과는 두 시료 모두 10 K에서 150 K 까지는 소멸시간이 증가하였고, 150 K 이후부터는 소멸시간이 감소하였다. 온도가 증가함에 따라 소멸시간이 증가하는 것은 양자점에서 장벽과 WL (wetting layer)로 운반자(carrier)의 이동, 양자점들 사이에 열에 의해 유도된 운반자의 재분배 등으로 인한 발광 재결합으로 설명할 수 있다. 150 K 이상에서 소멸시간이 감소하는 것은 열적효과에 의한 비발광 재결합 과정에 의한 운반자의 소멸이 증가하기 때문이다. 온도에 따른 TRPL 결과는 두 시료 모두 150 K까지는 발광재결합이 우세하고, 150 K 이상에서 비발광재겹합이 우세하게 나타났다.

  • PDF

TCSPC에 의한 DODCI의 형광 소멸시간 및 비등방성 측정 연구 (Lifetime and Anisotropy Measurements of DODCI in the excited state by TCSPC)

  • 이민영;김동호
    • 한국광학회지
    • /
    • 제1권1호
    • /
    • pp.52-57
    • /
    • 1990
  • 피코초 레이저와 고속 전자장치를 사용하여 subnanosecond에서 microsecond 넓은 범위에 걸쳐서 발광 소멸 시간을 측정할 수 있는 time-correlated single photon counting(TCSPC) 장치를 개발하였다. 이 TCPSC를 사용하여 색소레이저에 있어서 saturable absorber로 많이 쓰이는 DODCI의 소멸시간 및 회전 완화시간을 측정함으로써 여기상태에서의 동력학과 회전운동에 관해 연구하였다.

  • PDF

InAs/GaAs 양자점의 발광특성에 대한 InGaAs 캡층의 영향 (Influence of InGaAs Capping Layers on the Properties of InAs/GaAs Quantum Dots)

  • 권세라;류미이;송진동
    • 한국진공학회지
    • /
    • 제21권6호
    • /
    • pp.342-347
    • /
    • 2012
  • Migration-enhanced molecular beam epitaxy법을 이용하여 GaAs 기판에 성장한 InAs 양자점(quantum dots: QDs)의 광학적 특성을 PL (photoluminescence)과 time-resolved PL을 이용하여 분석하였다. 시료 온도, 여기 광의 세기, 발광 파장에 따른 InAs/GaAs QDs (QD1)과 $In_{0.15}Ga_{0.85}As$ 캡층을 성장한 InAs/GaAs QDs (QD2)의 발광특성을 연구하였다. QD2의 PL 피크는 QD1의 PL 피크보다 장파장에서 나타났으며, 이것은 InGaAs 캡층의 In이 InAs 양자점으로 확산되어 양자점의 크기가 증가한 것으로 설명된다. 10 K에서 측정한 QD1과 QD2의 PL 피크인 1,117 nm와 1,197 nm에서 PL 소멸시간은 각각 1.12 ns와 1.00 ns이고, 발광파장에 따른 PL 소멸시간은 PL 피크 근처에서 거의 일정하게 나타났다. QD2의 PL 소멸시간이 QD1보다 짧은 것은 QD2의 양자점이 커서 파동함수 중첩이 향상되어 캐리어 재결합이 증가한 때문으로 설명된다.

CaO와 $TiO_2$분말로 합성된 $CaTiO_3$:Pr형광체의 발광구조 해석과 음극선 발광특성 (The Luminescent Mechnism and Cathodoluminescence of $CaTiO_3$:Pr Synthesized with CaO and $TiO_2$ Powders)

  • 박용규;한정인;곽민기;이인규;김대현
    • 한국전기전자재료학회논문지
    • /
    • 제11권8호
    • /
    • pp.646-651
    • /
    • 1998
  • In this present study, the luminescence characteristics and mechanism of energy $CaTiO_3$:Pr phosphor were studied using disk specimens sintered at various temperatures and envirenment. A single-phase $CaTiO_3$:Pr was synthesized by sintering above 140$0^{\circ}C$ and its crystal structure was found to be perovskite orthorhombic. A dominant peak around 360 nm and a broad peak around 395 nm were observed in the PLE(Photoluminescence Excitation) spectrum of $CaTiO_3$:Pr with fixed emission wavelength at 612 nm, the decay time of 360 nm excitation was found to be longer than that of 395 nm excitation. From this result, it is assumed that the free carrier excited to 360 nm is transferred to 395 nm energy level. Therefore, the decrease in 395 nm intensity observed in CaTiO$_3$:Pr specimens sintered in Ar gas environment induced shorter decay time and improved CL luminescence.

  • PDF

As 공급 조건 변화에 의한 InAs 양자점의 광학적 특성

  • 최윤호;류미이;조병구;김진수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.297-297
    • /
    • 2012
  • 양자점은 공간적으로 세 방향 모두 전하의 운동을 제한하는 0차원 구조로 불연속적인 상태 밀도를 가진다. 이런 양자점의 특성은 광통신용 소자, 레이저 다이오드 등과 같은 광학 및 전자 장치에 응용될 수 있기 때문에 많은 주목을 받아 활발히 연구되어 왔다. 본 연구에서는 MBE 장비를 이용하여 GaAs 기판위에 InAs 양자점을 성장시키는 동안 As의 공급을 임의로 차단시켜 양자점 형성 조건을 변화시킨 시료들의 광학적 특성을 Photoluminescence (PL) 와 Time-resolved PL (TRPL) 실험을 이용하여 분석하였다. GaAs (001) 기판 위에 GaAs buffer layer를 $610^{\circ}C$에서 성장한 후, $470^{\circ}C$에서 As 공급 조건 변화에 따른 InAs 양자점을 성장하였다. 양자점을 성장한 후 GaAs cap layer를 $610^{\circ}C$에서 성장하였다. InAs 양자점 시료들은 In을 20초 공급하는 동안 As의 공급과 차단을 각각 1초, 2초, 3초의 일정한 간격으로 반복하였다. 10 K에서 각각의 시료들의 PL을 측정한 결과 As 공급과 차단을 2초씩 반복한 T2시료에서 PL 세기가 가장 좋게 나타났으며, 3초씩 반복한 T3시료에서 가장 나쁘게 나타났다. PL 피크는 공급과 차단을 1초씩 반복한 T1 시료가 1.23 eV, T2 시료가 1.24 eV, T3 시료가 1.26 eV에 나타났으며, As의 차단시간이 증가함에 따라 PL 피크가 높은 에너지로 이동함을 보였다. 발광파장에 따른 PL 소멸은 파장이 증가함에 따라 점차 느려지다가 PL 피크 근처에서 가장 느린 소멸곡선을 보이고, 파장이 더 증가하였을 때 점차 빠르게 소멸하였다. As 공급 조건의 변화에 따라 InAs 양자점의 크기와 밀도, 모양 등이 변하는 것을 Atomic Force Microscope (AFM) image를 통하여 확인하였으며, PL과 TRPL을 이용하여 InAs 양자점의 광학적 특성을 분석하였다.

  • PDF

Photobacterium phosphoreum의 생체발광 유지도에 관한 연구 (Studies on the Maintenance of Bioluminescence from Stored Photobacterium phosphoreum)

  • 김현숙;정성제;전억한
    • 한국미생물·생명공학회지
    • /
    • 제28권2호
    • /
    • pp.117-123
    • /
    • 2000
  • P. phosphoreum의 생존과 생체발광도는 온도에 의해 많은 영향을 받는다. 냉동 저장한 세포의 경우 glycerol의 보호 작용으로 세포농도와 생균수는 측정기간 동안 일정하게 유지된 반면 생체발광도는 glycerol 첨가 직후 급속히 감소하였으며, 저장 이후에도 감소된 생체발광도가 활성화되지 못하였다. 최적 생육온도인 $20^{\circ}C$의 경우 저장 초기 세포가 성장함에 따라 세포수의 증가를 보였으나 일정 시간 이후 세포 분해 현상으로 인하여 생균수 및 세포 집락수의 감소를 나타내었으며, 생체발광도는 저장 3일 이후 소멸되었다. 이와는 대조적으로 $4^{\circ}C$에 저장한 세포의 생체발광도는 저장 10일 동안 지속되어 가장 높은 생체발광 유지도를 나타내었으나 장기간 저온 저장으로 인하여 세포가 VBNC 상태에 돌입됨에 따라 총균수와 생균수는 일정한 반면 저장 10일 이후 세포 집락수의 급격한 감소를 나타내었으며, 저장 20일 이후 간균에서 구균으로 세포 형태상의 변화를 나타내었다. 이에 따라 세포 저장 시 접종원의 농도를 달리하여 VBNC 상태와 생체발광도의 관련성을 조사한 결과 VBNC 세포가 증가할수록 생체발광도의 감소를 나타내었다. 따라서 VBNC 세포를 감소시키기 위하여 세포를 고정화하여 저장한 결과 별도의 활성제 없이 실온에서 다시 활성화되어 고정화하지 않은 세포에 비해 2.3배 높은 생체발광유지도를 나타내었으며, 저온저장에 따른 platebility 소실과 세포 응축현상이 나타나지 않았다. 이러한 결과는 세포의 고정화 방법을 이용하여 $4^{\circ}C$에서도 세포의 생존 및 생체발광 유지도를 향상시킬 수 있으며, 동결 건조법의 단점을 보완해 줄 것으로 생각된다.

  • PDF

디지털 합금 InGaAlAs 다중 양자 우물의 열처리 온도에 따른 발광 특성 (Effect of Annealing Temperature on the Luminescence Properties of Digital-Alloy InGaAlAs Multiple Quantum Wells)

  • 조일욱;변혜령;류미이;송진동
    • 한국진공학회지
    • /
    • 제22권6호
    • /
    • pp.321-326
    • /
    • 2013
  • 디지털 합금(digital alloy) InGaAlAs 다중 양자 우물(multiple quantum wells: MQWs) 구조의 열처리(rapid thermal annealing: RTA) 온도에 따른 발광 특성을 PL (photoluminescence)와 TRPL (time-resolved PL)를 이용하여 분석하였다. $700^{\circ}C$에서 $850^{\circ}C$까지 온도를 변화시켜 RTA한 디지털 합금 MQWs의 PL 결과는 $750^{\circ}C$에서 RTA한 시료가 가장 강한 PL 세기와 가장 좁은 반치폭을 나타내었다. 이것은 $750^{\circ}C$에서 30초 동안 RTA하였을 때 비발광 재결합 센터가 감소하고 가장 매끄러운 경계면이 형성되는 것을 나타낸다. RTA 온도를 $800^{\circ}C$$850^{\circ}C$로 증가하였을 때 PL 피크는 청색편이 하였으며 PL 세기는 감소하였다. PL 피크의 청색편이는 RTA 온도가 증가함에 따라 InGaAs/InAlAs SPS (short-period superlattice)의 경계면에서의 Ga과 Al의 혼합(intermixing)으로 Al 함량이 증가한 것으로 설명되며, PL 세기의 감소는 경계면의 거칠기의 증가와 인듐의 상분리(phase separation)로 인한 비균일 조성(compositional fluctuation)으로 설명된다. RTA 온도를 증가하였을 때 PL 소멸시간은 증가하였으며, 이것은 비발광 재결합 센터(결정 결함)가 감소한 것을 나타낸다. 디지털 합금 InGaAlAs MQWs 시료의 PL 특성은 적절한 RTA 조건에서 현저히 향상되는 것을 확인하였다.

인의 도핑으로 인한 실리콘산화물 속 실리콘나노입자의 광-발광현상 증진 및 억제 (Enhancement and Quenching Effects of Photoluminescence in Si Nanocrystals Embedded in Silicon Dioxide by Phosphorus Doping)

  • 김준곤;우형주;최한우;김기동;홍완
    • 한국진공학회지
    • /
    • 제14권2호
    • /
    • pp.78-83
    • /
    • 2005
  • 지난 10년 동안 유전체 내부에 형성된 나노미터 크기의 규소알갱이는 발광센터로서 주목 받아왔다 나노미터 크기인 결정질 규소의 엑시토닉 전자-홀의 쌍들이 발광결합에 기여한다고 여겨진다. 그러나 규소결정에 존재하는 여러가지 결함들은 비발광 천이의 경로가 되어 나노규소결접립의 발광천이와 경쟁하여 발광효율을 저하시키는 요인이 된다. 이러한 결정 결함들은 고온 열처리과정에서 대부분 소멸되나 $1000^{\circ}C$ 이상의 공정 에서도 나노규소와 유전체의 계면에 존재하는 결함들은 나노규소결정립의 발광을 억제하게 된다. 일반적으로 수소로서 규소결정립의 계면을 마감처리하게 되면 규소결정립의 발광효율이 획기적으로 향상되나 불행하게도 매질 내 수소의 높은 이동성으로 말미암아 후속 열처 리 과정에서 수소마감효과는 쉽게 손실된다. 따라서 본 연구에서는 온도가역적인 수소 대신 인을 이온주입 방법으로 첨가하여 수소와 같은 계면 마감효과를 얻으며 또한 후속 고온공정 에 대한 내구력을 증대시켰다. 모재인 산화규소 기판에 400keV, $1\times10^{17}\; Si/cm^2$와 그 주위에 균일한 함량을 도핑하기 위하여 다중에너지의 인을 주입하였다. 규소와 인을 이온주입 후 Ar 분위기에서 $1100^{\circ}C$ , 두 시간의 후열처리를 통하여 규소결정립을 형성하였으며 향상된 내열효과를 시험하기 위하여 Ar 분위기에서 $1000^{\circ}C$까지 열처리하였다. 인으로 마감된 나노미터 크기인 규소 결정립의 향상된 광-발광(PL)효과와 감쇄시간, 그리고 발광파장의 변화에 대하여 논의하였다.

As 차단 시간 변화에 의한 InAs 양자점의 광학적 특성 (Optical Properties of InAs Quantum Dots Grown by Changing Arsenic Interruption Time)

  • 최윤호;류미이;조병구;김진수
    • 한국진공학회지
    • /
    • 제22권2호
    • /
    • pp.86-91
    • /
    • 2013
  • Arsenic interruption growth (AIG)법을 이용하여 GaAs 기판에 성장한 InAs 양자점(quantum dots, QDs)의 광학적 특성을 PL (photoluminescence)과 time-resolved PL을 이용하여 분석하였다. AIG법은 InAs 양자점 성장 동안 In 공급은 계속 유지하면서 셔텨(shutter)를 이용해서 As 공급과 차단을 조절하는 방법이다. 본 연구에서는 As 공급과 차단을 1초(S1), 2초(S2), 또는 3초(S3) 동안 반복하여 성장한 InAs QDs과 As 차단 없이 성장한 기준시료(S0)를 사용하였다. AIG법으로 성장한 시료들의 PL 세기는 기준시료보다 모두 강하게 나타나고, As 차단 시간에 따라 PL 피크는 적색이동(redshifted) 또는 청색이동 (blueshifted)하여 나타났다. 기준시료 S0의 PL 피크와 비교하였을 때 S1의 PL 피크의 적색이동은 양자점 평균 길이가 S0보다 증가하였기 때문이며, S3의 청색이동은 양자점 평균 길이가 S0보다 감소하였기 때문이다. AIG법으로 성장한 QDs 시료들의 PL 세기의 증가는 cluster의 감소, 양자점 밀도의 증가, 균일도의 향상, 종횡비(aspect ratio) 향상으로 설명된다. 온도에 따른 PL 세기와 PL 피크 에너지, PL 소멸 시간과 발광 파장에 따른 PL 소멸 시간을 측정하였다. As 공급과 차단을 2초로 하였을 때 cluster는 전혀 나타나지 않았고 양자점의 밀도는 증가하였으며 균일도와 종횡비도 향상되었다. 또한 S2는 가장 강한 PL 세기와 가장 긴 소멸 시간을 나타내었다. 이러한 결과는 AIG법을 이용하여 InAs 양자점의 크기, 조밀도, 균일도, 종횡비 등을 조절하여 원하는 파장대의 양자점을 성장할 수 있으며 발광 특성도 향상시킬 수 있음을 확인하였다.

다층 성장한 InAs/InAlGaAs 양자점의 광학적 특성 (Optical Characteristics of Multi-Stacked InAs/InAlGaAs Quantum Dots)

  • 오재원;권세라;류미이;조병구;김진수
    • 한국진공학회지
    • /
    • 제20권6호
    • /
    • pp.442-448
    • /
    • 2011
  • 자발형성법으로 InP (001) 기판에 성장한 InAs/InAlGaAs 양자점(QDs, quantum dots)의 광학적 특성을 PL (photoluminescence)과 TRPL (time-resolved PL)을 이용하여 분석하였다. InAs 양자점 시료는 single layer InAs/InAlGaAs QDs (QD1)과 7-stacked InAs/InAlGaAs QDs (QD2)를 사용하였다. 저온(10 K)에서 QD1과 QD2 모두 1,320 nm에서 PL 피크가 나타났으며, 온도를 300 K까지 증가하였을 때 각각 178 nm와 264 nm의 적색편이(red-shift)를 보였다. QD1의 PL 소멸시간은 PL 피크인 1,320 nm에서 1.49 ns이고, PL 피크를 중심으로 장파장과 단파장으로 이동하면서 점차 짧아졌다. 그러나 QD2의 PL 소멸시간은 발광파장이 1,130 nm에서 1,600 nm까지 증가할 때 1.83 ns에서 1.22 ns로 점진적으로 짧아졌다. 이러한 QD2의 PL과 TRPL 결과는 평균 양자점의 크기가 InAs/InAlGaAs 층이 증가함에 따라 점차 증가하기 때문으로 single layer인 QD1에 비해 양자점 크기의 변화가 더 크기 때문으로 설명된다.