• Title/Summary/Keyword: 발광곡선

Search Result 96, Processing Time 0.03 seconds

Preparation of ZnO Thin Films with UV Emission by Spin Coating and Low-temperature Heat-treatment (스핀코팅 및 저온열처리에 의한 자외선 발광특성을 갖는 산화아연 박막의 제조)

  • Kang, Bo-An;Jeong, Ju-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.3
    • /
    • pp.73-77
    • /
    • 2008
  • Purpose: This research is that prepare amorphous or crystalline ZnO thin films with pure strong UV emission on soda-lime-silica glass (SLSG) substrates by low-temperature annealing. Methods: Growth characteristic and optical properties of the amorphous or nano-crystalline ZnO thin films prepared on soda - lime - silica glass substrates by chemical solution deposition at 100, 150, 200, 250 and $300^{\circ}C$ were investigated using X-ray diffraction analysis, ultraviolet - visible - near infrared spectrophotometer, and photoluminescence. Results: The films exhibited an amorphous pattern even when finally annealed at $100^{\circ}C{\sim}200^{\circ}C$ for 60 min, while crystalline ZnO was obtained by prefiring at 250 and $300^{\circ}C$. The photoluminescence spectrum of amorphous ZnO films shows a strong NBE emission, while the visible emission is nearly quenched. Conclusions: These results indicate it should be possible to cheaply and easily fabricate ZnO-based optoelectronic devices at low temperature, below $200^{\circ}C$, in the future.

  • PDF

Effect of Temperature on the Luminous Properties of Remote-Phosphor White Light-Emitting Diodes (이격 형광체 구조가 적용된 백색 LED 광원의 온도변화에 따른 발광 특성 분석)

  • Choi, Min-Hyouk;Lee, Hun Jae;Ko, Jae-Hyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.5
    • /
    • pp.254-261
    • /
    • 2014
  • Two types of white light-emitting diodes (LEDs) with different phosphor structures were fabricated and compared in terms of their optical characteristics. Their spectroscopic properties were analyzed as a function of temperature, from room temperature to $80^{\circ}C$. The temperature dependence of the luminance and the color coordinates showed that the decrease in luminance and change in the color coordinates of the remote-phosphor type LED were much smaller compared to the conventional white LED. These improvements were attributed to the decrease in phosphor temperature, due to the distance between the LED chip and the phosphor layer, as well as to the reduced absorption by the LED chip of the light emitted from the phosphor layer.

Hysteresis Phenomenon of Hydrogenated Amorphous Silicon Thin Film Transistors for an Active Matrix Organic Light Emitting Diode (능동형 유기 발광 다이오드(AMOLED)에서 발생하는 수소화된 비정질 실리콘 박막 트랜지스터 (Hydrogenated Amorphous Silicon Thin Film Transistor)의 이력 (Hysteresis) 현상)

  • Choi, Sung-Hwan;Lee, Jae-Hoon;Shin, Kwang-Sub;Park, Joong-Hyun;Shin, Hee-Sun;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1295-1296
    • /
    • 2006
  • 수소화된 비정질 실리콘 박막 트랜지스터(a-Si:H TFT)의 이력 현상이 능동형 유기 발광 다이오드(Active-Matrix Organic Light Emitting Diode) 디스플레이 패널을 구동할 경우에, 발생할 수 있는 잔상(Residual Image) 문제를 단위 소자 및 회로에서 실험을 통하여 규명하였다. 게이트 시작 전압을 바꾸어 VGS-ID 특성을 측정할 경우, 게이트 시작 전압이 5V에서 시작한 VGS-ID 곡선이 10V에서 시작한 VGS-ID 곡선에 비해 왼쪽으로 0.15V 이동하였다. 이러한 결과는 게이트 시작 전압의 차이에 의해 발생한 트랩된 전하량(Trapped Charge) 변화로 설명할 수 있다. 또한, 인가하는 게이트 전압 간격을 0.5V에서 0.05V로 감소시켰을 때 전하 디트래핑 비율의 변화(Charge De-trapping Rate)로 인하여, 이력 현상(Hysteresis Phenomenon)으로 인한 단위 소자에서의 문턱전압의 변화가 0.78V에서 0.39V로 감소함을 관찰하였다. 제작된 2-TFT 1-Capacitor의 ANGLED 화소에서 (n-1)번째 프레임에서의 OLED 전류가 (n)번째 프레임에서의 OLED 전류에 35%의 전류오차를 발생시키는 것을 측정 및 분석하였다.

  • PDF

Identification of irradiated soybean with different processing and origin (대두의 가공특성 및 원산지별 조사처리 판별 연구)

  • Jung, Yoo-Kyung;Lee, Hye-Jin;Lee, Ji-Yeon;Choi, Jang-Duck;Kwon, Ki-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.252-257
    • /
    • 2017
  • In this study, the physicochemical properties of irradiated (gamma-ray and electron-beam) soybeans with different processing (dry and powder) and origins (Korea, China, and USA) were investigated and compared. The results of photostimulated luminescence (PSL) screening indicated that all non-irradiated soybeans showed photon counts (PCs) ${\leq}700$, while all irradiated soybeans showed positive values-gamma-ray 5,815-39,591 count/min; electron beam 5,791-60,055 count/min. The results of thermoluminescence (TL) analysis of all irradiated soybeans indicated that the $TL_1$ glow curves exhibited maximum peaks at 150-250. TL ratio of irradiated samples was ${\geq}0.1$; therefore, the clear identification of irradiated samples was guaranteed by analysis of the $TL_1$ curve shape and TL ratios. The results of electron spin resonance (ESR) signal of 3 irradiated and dried soybeans showed two side peaks mutually spaced at 6.0 mT (cellulose radical). Non-specific signal was detected for all irradiated soybean powders; hence, ESR analysis could not be performed.

$^{137}$ Cs Gamma Ray Induced Thermoluminescence from ion Implanted $Al_2$O$_3$ ($^{137}$ Cs 감마선 여기에 의한 이온 주입된 $Al_2$O$_3$의 열자극 발광)

  • 김태규;이병용;김성규;박영우;추성실
    • Progress in Medical Physics
    • /
    • v.5 no.2
    • /
    • pp.3-12
    • /
    • 1994
  • $\^$137/Cs gamma ray induced thermoluminescenc(TL) from Na$\^$+/ ion implanted Al$_2$O$_3$ and unimplanted Al$_2$O$_3$ and the TL from Na$\^$+/ ion implanted Al$_2$O$_3$ are measured over the temperature range of 340K~620K. The TL curve of Na$\^$+/ ion implanted Al$_2$O$_3$ induced by $\^$137/Cs gamma ray is split into iolated TL peak located at 415K, 452K, 508K, and 568K. Because that the concentration of trapped char he carries of $\^$137/Cs gamma ray induced Al$_2$O$_3$ implanted with Na$\^$+/ ion is larger than that of Na$\^$+/ ion only implanted Al$_2$O$_3$, and the trap concentration of Na$\^$+/ ion implanted Al$_2$O$_3$ is much than that of $\^$137/Cs gamma ray only irradiated Al$_2$O$_3$, the TL intensity of Na$\^$+/ ion implanted Al$_2$O$_3$ induced by $\^$137/Cs gamma ray is about 20 times and 5 times higher than that of Al$_2$O$_3$ only implanted with Na$\^$+/ ion and Al$_2$O$_3$ only irradiated with $\^$137/Cs gamma ray, respectively. In proportion as ion implantation does and energy are incresed, the number of generated defects and the rate of defect creation are incresed, respectively. Therefore the TL intensity of ion implanted Al$_2$O$_3$ is depend on ion dose and energy. Acccrding to increse of incident ion mass, the TL intensity of ion implanted Al$_2$O$_3$ is abruptly decresce. This result showes that the TL intensity of ion implanted Al$_2$O$_3$ is closely related to ion depth range as wll as rate of defect creatin. The TL intensity of ion implanted Al$_2$O$_3$ is found to be related with defects generated by ion implantation. Table Caption

  • PDF

Degradation Mechanisms of Organic Light-emitting Devices with a Glass Cap (유리 덮개로 보호된 OLED소자의 발광특성 저하 연구)

  • Yang Yong Suk;Chu Hye Yong;Lee Jeong-Ik;Park Sang-He;Hwang Chi Sun;Chung Sung Mook;Do Lee-Mi;Kim Gi Heon
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.64-72
    • /
    • 2006
  • We demonstrated organic light-emitting devices (OLEDs) based on the organic thin-film materials such as tris-(8-hydroxyquinoline) aluminum $(Alq_3)$. The structure of OLEDs was vacuum deposited upon transparent and thin glass substrates pre-coated with a transparent, conducting indium tin oxide thin film. The luminance characteristics, current, capacitance, and dispersion factor for degraded OLEDs, which were made by various bias currents $(0.5mA\;{\leq}\;I_{Bias}\;{\leq}9mA)$, are studied. The current dependences of lifetime were divided at approximately 2mA, and they represented nearly linear behaviors but had different slopes in a logarithmic plot of lifetime versus bias current. With lighting OLEDs, the anomaly of capacitance, as shown in the CV curve, occurred because of two factors, polarization in the bulk of organic materials and the interface between the metal and organic layers. In decayed OLEDs that had lower bias currents of less than 2mA, it was found that the degradation of luminance was related to both the decrease of polarization and to the lowering of the injection barrier.

Wavelength-resolved Thermoluminescence of Chemical-vapor-deposited Diamond Thin Film (화학증착된 다이어몬드 박막의 파장 분해된 열자극발광)

  • Cho, Jung-Gil;Yi, Byong-Yong;Kim, Tae-Kyu
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Diamond thin films were synthesized by a chemical vapor deposition (CVD). Raman spectrum showed the diamond line at 1332 $cm^{-1}$ / and x-ray diffraction pattern exhibited a strong (111) peak of diamond. The scanning electron microscopy analysis showed that the CVD diamond thin film was grown to be unepitaxial crystallites with pyramidal hillocks. A wavelength-resolved thermoluminescence (TL) of the CVD diamond thin film irradiated with X-rays showed one peak at 430 nm around 560 K. The glow curve of the CVD diamond thin film produced one dominant 560-K peak that was caused by first-order kinetics. Its activation energy and the escape frequency were calculated to be 0.92 ~ 1.05 eV and 1.34 $\times$ 10$^{7}$ sec$^{-1}$ , respectively. The emission spectrum at 560 K was split into 1.63-eV, 2.60-eV, and 3.07-eV emission bands which is known to be attribute to silicon-vacancy center, A center, and H3 center, respectively.

  • PDF

Fabrication of $CaSO_4:Eu$ TLD and Its Physical Characteristics ($CaSO_4:Eu$ TLD의 제작과 물리적 특성)

  • Kim, Do-Sung;Park, Myeong-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.388-393
    • /
    • 1999
  • In this study, the $CaSO_4:Eu$ TLDs are fabricated and their trap parameters are determined. The optimum concentration of Eu for fabrication of the $CaSO_4:Eu$ TLD is 0.5 mol% and optimum temperature is $600^{\circ}C$ for 2 hours sintering in air. The glow curve of $CaSO_4:Eu$ consists of two glow peaks and these peaks are isolated by thermal bleaching method. Trap parameters of two glow peaks are measured using the initial rise, the peak shape, the heating rate and the least square curve fitting methods. The activation energies of the glow peak I and II are 1.00 eV and 1.09 eV, and the frequency factors are $7.04{\times}10^{11}\;s^{-1}$ and $5.12{\times}10^{11}\;s^{-1}$ and the kinetic orders are 1.11 and 1.33, respectively.

  • PDF

Thermoluminescence Kinetics of LYGBO Crystal (LYGBO 단결정의 열형광 전자포획준위 인자)

  • Sunghwan, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.17-23
    • /
    • 2023
  • In this study, the thermoluminescence kinetics of electron trap in Li6Y0.5Gd0.5(BO3)3 (LY0.5G0.5BO) scintillator for neutron detection composed of Li, Gd, and B with a high neutron response cross-section were investigated. The thermoluminescence glow curve of the LY0.5G0.5BO scintillation single crystal was measured and analyzed using the peak shape method, the initial rise method, and the machine learning algorithm to evaluate the physical parameters of the electron trap. The glow curve of the LY0.5G0.5BO scintillation single crystal consisted of a single peak. As a result of analyzing this peak, the activation energy, emission order, and frequency factor of the electron trap were 0.61 eV, 1.1, and 1.7×107 s-1, respectively. In addition, the possibility of thermoluminescence analysis of scintillators using machine learning was confirmed.

Changes of Optically Stimulated Luminescence Dosimeter Sensitivity with High Dose (고선량에 대한 광자극발광선량계의 방사선 민감도 변화 연구)

  • Han, Su Chul;Kim, Kum Bae;Choi, Sang Hyoun;Park, Seungwoo;Jung, Haijo;Ji, Young Hoon
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.98-104
    • /
    • 2016
  • We investigated the effect of high dose on the sensitivity of optically stimulated luminance dosimeters (OSLDs) on Co-60 gamma rays and used a commercial OLSD (Landauer, Inc., Glenwood, IL). New OSLDs were chosen arbitrarily and were irradiated with 1 Gy repeatedly. We confirmed the change in the radiation sensitivity after repeated irradiation. The OSLD sensitivity increased up to 3% after irradiating for seven times and decreased continuously after the eighth time. It dropped by approximately 0.35 Gy per irradiation. Finally, after irradiating for 30 times, the OSLD sensitivity decreased by approximately 7%. When the OSLDs were irradiated 10 times with 1 Gy after their irradiation using a high dose of 15 Gy and 30 Gy, their sensitivity decreased by 6% and 12%, respectively, compared to that before high-dose irradiation. The change in the OSLD sensitivity with a high dose could be modeled by an exponential equation. We confirmed the radiation sensitivity variation caused by a high dose, and the irradiation history of dosimeters was considered to reuse OSLDs irradiated with a high dose.