• Title/Summary/Keyword: 받침배치

Search Result 16, Processing Time 0.026 seconds

Variation of Seismic Behavior of Continuous Skew Plate Girder Bridges According to the Arrangement of Bearings (받침배치에 따른 연속 플레이트 거더 사교의 지진거동 변화)

  • Moon, Seong Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.124-135
    • /
    • 2011
  • The capacity of bearings installed at abutments and piers for continuous bridges is usually determined by the magnitude of the maximum vertical reaction at each support and the capacity of bearings placed at piers is higher than that at abutments. In this study, the possibility of the improved seismic performance of base-isolated continuous skew bridges was investigated by analysing the variation of the seismic behavior of them according to three arrangements of bearings. Based on the conventional arrangement of bearings(Case A), three arrangements of bearings such as Case A, Case B and Case C were selected considering the variation of the horizontal stiffness of the lead rubber bearing(LRB) installed at the pier. The seismic behavior of the total 36 skew bridges was investigated by conducting the response spectrum analysis using the hybrid response spectrum considered the effect of LRB's damping. Results of analyses show that a more desirable seismic behavior of base-isolated continuous skew bridges can be obtained by reducing the magnitude of the horizontal stiffness of LRB placed at the pier to similar to or less than that of LRB installed at abutments. The variation of LRB's stiffness at the pier brings about period elongation and the change of mode shapes of base-isolated skew bridges and results in the reduction of the total base shear, the maximum base shear at the pier and the girder stresses. Although positive effects on the seismic behavior of base-isolated skew bridges caused by the change of arrangement of bearings decreased slighty with an increase in the flexibility of the substructure, the proposed arrangements of bearings bring about the improved seismic performance of base-isolated continuous skew plate girder bridges with less than 10m height of piers.

Study on the Rational Analysis Methods and Seismic Responses of Curved Bridges (곡선교의 합리적인 지진해석기법 및 지진응답특성에 관한 연구)

  • Kim, Sang Hyo;Cho, Kwang Il;Park, Byung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.955-963
    • /
    • 2006
  • As the geometrical characteristic of the curved bridge, the seismic response of curved bridges are different from straight bridges. This study analyzed the seismic response of the curved bridges considering diverse factors such as radius of curvature, direction of seismic load and support condition. The improved simple modeling of the curved bridge for seismic analysis is proposed, and it is compared with the detail modeling in order to verify the simple modeling. Three simply supported curved bridges and six 3-span continuous bridges are selected for seismic analysis. The behavior of curved bridges are evaluated in terms of the displacement and the force at supports and piers under seismic load applied in various directions. The results of this study show that upward reaction force may appear in simply supported curved bridge under seismic load. And continuous curved bridges are affected by the direction of the seismic load.

Study on Modeling and Arrangement of Link-Shoes for Torsional Control of S-shaped Pedestrian Cable-Stayed Bridge (S자형 보도사장교의 비틀림 제어를 위한 링크슈의 모델링과 배치방법 연구)

  • Ji, Seon-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.210-218
    • /
    • 2019
  • Recently, cable-stayed bridges have been attempting to apply bold and experimental shapes for aesthetic and originality. In the case of bridges that have no similar cases, deep understanding and verification of analytical modeling is needed. S-shaped curved pedestrian cable-stayed bridge is always twisted because the cable is arranged on one side of the inverted triangular truss girder. In order to suppress the torsion, the Link-shoes are arranged at the left and right top members with reference to the Bearing placed at the mid-bottom member. The first research is related to the modeling method of Link-Shoe and Diaphram. In order to accurately reflect the transverse structural system and the torsional stiffness, it was necessary to model the Link-Shoe and the Diaphram directly rather than indirectly using the stiffness of the Bearing. The second study is related to the lateral arrangement of Bearing and Link-Shoes. Method 1 is to place in order of Link-shoe, Bearing, and Link-shoe from outside the curve radius. Method 2 is place to in order of Bearing, Bearing, and Link-shoe. In method 2, compared to method 1, the stress in the outer top member was larger and the stress in the inner one was decreased. It is analyzed that the stress adjustment is possible according to the lateral arrangement of Bearing and Link-Shoe.

Analysis of Moving Vehicle Load Distribution of Curved Steel Box Girder Bridges considering Various Support Conditions (곡선교의 받침특성에 따른 주행차량하중분배 특성분석)

  • Kim, Sang Hyo;Lee, Yong Seon;Cho, Kwang Yil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.711-720
    • /
    • 2002
  • A 3-D numerical model, which could demonstrate the static and dynamic responses of a curved bridge more precisely with the moving vehicles, was developed The dynamic response induced by the centrifugal rolling motion of vehicle was identified according to the variations of the partial grade and the curvature of the slab. Dynamic characteristics of the curved bridge with the moving vehicle were analyzed under the condition of support types and two different support systems. Parametric studies were conducted to compare the efficiency of load distribution in the curved bridge. In general, while the vehicle was crossing the curved bridge, negative reaction occurred in the inside of the girder. The final result showed that the support system located outside the girder was more advantageous than other systems, and the characteristics of load distributions differed from the others in the various conditions of support systems.

Dynamic Response of Curved Bridges by Support Arrangement (받침배치에 따른 곡선교의 동적응답에 관한 연구)

  • 김상효;이용선;김태열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.185-191
    • /
    • 2002
  • In this study a 3-dimensional analytical model is developed, which can analyses dynamic responses of curved bridges subject to moving vehicles. A 5-axle semi-trailer is modeled to simulate the actual tire forces that are redistributed by vehicle rolling effect due to the centrifugal force. The 1-span curved bridge with two steel box girders is modeled using the frame elements. The dynamic response characteristics of curved box girder bridges are examined and compared for two different support conditions. One is the case that two shoes are arranged at the outer sides of box girders with larger space between the two shoes and the other is that two shoes at the center of each box girder. In the curved bridges, the dynamic effect of moving vehicles influences the reaction force much more than other responses, such as displacement or stress, especially the upward reaction of inner-radius shoes. It is more advantageous for the reaction considering dynamic effect when shoes are arranged further at the outer sides of box girders than when shoes at the center of each box. The shoes for curved bridges with two-box girder system should be arranged to have larger distance.

  • PDF

A Statistical Approach to Paired versus Group Comparisons (쌍체비교와 독립비교에 대한 통계적인 고찰)

  • Kim Tae-Min;Kim Sang-Boo
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.2
    • /
    • pp.231-240
    • /
    • 2006
  • It is well understood that a paired comparison (paired t test) provides better precision than a group comparison (two-sample t test), when the pairing is effective (the variation within a pair is small). However, when the variation among the pairs is sufficiently small, the group comparison is likely to yield a better result. To get a statistical explanation of this, we examine the two methods through an analogy to one-way and two-way analysis of variance. We introduce a new measure, R statistic, which is the ratio of their confidence interval lengths, as a quantitative criterion for comparing the two methods. The distribution of the Rf statistic is described by t and F distribution functions. Through this characterization, we show that the paired comparison can be better than group comparison when the variation among the pairs is statistically significantly large.

Comparison of marginal and internal fit of zirconia abutments with titanium abutments in internal hexagonal implants (내부육각 연결형 임플란트에서 지르코니아 지대주와 티타늄 지대주의 변연 및 내면 적합도의 비교)

  • Kim, Young-Ho;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.2
    • /
    • pp.93-102
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate the fit accuracy of two zirconia and titanium abutments in internal hexagonal implants. Materials and methods: One titanium abutment and two zirconia abutments were tested in internal hexagonal implants (TSV, Zimmer). Prefabricated zirconia abutments (ZirAce, Acucera) and customized zirconia abutments milled by the Zirkonzahn system (Zirkonzahn Max, Zirkonzahn) were selected and prefabricated titanium abutments (Hex-Lock, Zimmer) were used as a control. Eight abutments per group were connected to implants with 30 Ncm torque. The marginal gaps at abutment-implant interface, the internal gaps at internal hex, vertical and horizontal gaps between screws and screw seats in abutments were measured after sectioning the embedded specimens using a scanning electron microscope. Data analysis included one-way analysis of variance and the Scheffe test (n=16, ${\alpha}=0.05$). Results: The mean marginal gap of customized zirconia abutment was higher than those of two prefabricated zirconia and titanium abutments. The internal gaps at internal hex showed no significant differences between customized and prefabricated abutments and were higher than those of prefabricated titanium abutments. The mean vertical and horizontal gaps at screw in prefabricated zirconia abutment were higher than those of prefabricated titanium abutment. In the case of customized zirconia abutment, the mean horizontal gap at screw was higher than those of both the prefabricated zirconia and the titanium abutment but the mean vertical gap was not even measureable. The screw seats were clearly formed but did not match with abutment screws in prefabricated zirconia abutments. They were not, however, precisely formed in the case of customized zirconia abutments. Conclusion: Within the limitations of this study, the prefabricated titanium abutments showed better fit than the zirconia abutments, regardless of customized or prefabricated. Also, the customized zirconia abutments showed significantly higher marginal gaps and the fit was less accurate between screws and screw seats than the prefabricated abutments, titanium and zirconia.

An Experimental Study on the Damping Capacity of Lead Rubber Bearing with High Lead-plug Area Ratio (납-플러그 면적비가 큰 LRB의 감쇠능력에 관한 실험적 연구)

  • Choi, Jung-Ho;Kim, Woon-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.217-224
    • /
    • 2009
  • Many engineering researches are performed to ensuring structural safety from earthquake. In this study, the damping capacity of LRB(lead rubber bearing) with high lead-plug area ratio was examined by hysteresis loop from experiments. The displacement controlled tests were performed for 12 specimens designed in 2 types by lead-plug area ratio as main parameter. Each coupled specimens were tested by 3 times sinusoidal loads with different loading velocities. From the experimental results, LRB with high lead-plug area ratio has sufficient damping ratio for reducing horizontal seismic load to structures.

Study on the effect of cable on the lateral behavior of S-shaped Pedestrian-CSB (S형 보도사장교의 케이블이 횡방향 거동에 미치는 영향 연구)

  • Ji, Seon-Geun;Yhim, Sung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.577-584
    • /
    • 2019
  • Recently, CSB(Cable-Stayed Bridge) have been attempted to be atypical forms for landscape elements in Korea. CSB with new geometry need to analyze their characteristics clearly to ensure structural safety. This study's bridge is the S-shaped curved pedestrian CSB that has a girder with S-shape plane curve and reverse triangular truss cross section, inclined independent pylon, modified Fan type main cable and vertical backstay cable. Curved CSB can have excessive lateral displacement and moment when the tension is adjusted, focusing only on longitudinal behavior, such as a straight CSB. In order to analyze the effect of the cable on the lateral behavior of bridges, the cable is divided into two groups according to the lateral displacement direction of the pylon due to tension. The influence of the combination ratio of GR1 and GR2 on the girder, bearing, pylon, and vertical anchor cable was analyzed. When the tension applied to the bridge is 1.0GR1 plus 1.0GR2, In the combination of 1.2GR1 plus 0.8GR2, the stress on the left and right upper member of the truss girder and the deviation of the both were minimized. In addition, the horizontal force of the bearing, the lateral displacement and moment of the pylon, and the tension of the vertical backstay cable also decreased. This study is expected to be used as basic data for determination of tension of CSB with similar geometry.

A Temperature Predicting Method for Thermal Behaviour Analysis of Curved Steel Box Girder Bridges (곡선 강박스거더교의 온도거동 분석을 위한 온도분포 예측기법에 관한 연구)

  • Cho, Kwang-Il;Won, Jeong-Hun;Kim, Sang-Hyo;Lu, Yung-Chien
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.105-113
    • /
    • 2008
  • Solar radiation induces non-uniform temperature distribution in the bridge structure depending on the shape of the structure and shadows cast on it. Especially in the case of curved steel box girder bridges, non-uniform temperature distribution caused by solar radiation may lead to unusual load effects enough to damage the support or even topple the whole curved bridge structure if not designed properly. At present, it is very difficult to design bridges in relation to solar radiation because it is not known exactly how varying temperature distribution affects bridges; at least not specific enough for adoption in design. Standard regulations related to this matter are likewise not complete. In this study, the thermal behavior of curved steel box girder bridges is analyzed while taking the solar radiation effect into consideration. For the analysis, a method of predicting the 3-dimensional temperature distribution of curved bridges was developed. It uses a theoretical solar radiation energy equation together with a commercial FEM program. The behavior of the curved steel box girder bridges was examined using the developed method, while taking into consideration the diverse range of bridge azimuth angles and radii. This study also provides reference data for the thermal design of curved steel box girder bridges under solar radiation, which can be used to develop design guidelines.