• Title/Summary/Keyword: 반투막

Search Result 18, Processing Time 0.028 seconds

Development of Osmotic Infusion Pump (삼투압 약물주입 펌프의 개발)

  • Kim, Dong Sun;Choi, Seong Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.471-475
    • /
    • 2015
  • Because of increasing demand, a small portable drug injector that uses osmotic pressure for its operation force is developed, and its performance is evaluated. The osmotic drug injector can be small and lightweight because it does not require heavy batteries and an actuator, unlike previous electromechanical drug injectors. Moreover, its injection pressure can be sustained longer than that of previous elastic drug injectors. The new device is composed of a drug sac, osmotic pressure chamber, semipermeable membrane, and solvent chamber. To evaluate its performance, an in-vitro experiment was designed to measure the outflow and the injection pressure with respect to time. The experimental results show that the new drug infuser can continuously deliver 20 ml drug over a period of 20 h. The maximum injecting pressure was over 400 mmHg. Which prevents backflow caused by changes in the outlet pressure resulting from changes to the position of the device and the patient's posture.

Recent Progress in Qantum Dots Containing Thin Film Composite Membrane for Water Purification (양자점이 합체된 복합 박막을 이용한 정수의 최근 발전)

  • Park, Shinyoung;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.293-306
    • /
    • 2020
  • Increasing harmful effects of climate change, such as its effect on water scarcity, has led to a focus on developing effective water purification methods to obtain pure water. Additionally, rising levels of water pollution is increasing levels of environmental degradation, calling for sources of water treatment to remove contaminants. To purify water, osmotic processes across a semipermeable membrane can take place, and recent studies are showing that incorporating nanoparticles, including carbon quantum dots (CQDs), graphene carbon dots (GQDs), and graphene oxide quantum dots (GOQDs) are making thin film composite (TFC) membranes more effective by increasing water flux while maintaining similar levels of salt rejection, increasing the hydrophilicity of the membrane surface, showing bactericidal properties, exhibiting antifouling properties to prevent accumulation of bacteria or other microorganisms from reducing the effectiveness of the membrane, and more. In the review, the synthesis process, applications, functionality, properties, and the role of several types of quantum dots are discussed in the composite membrane for water purification.

Preparation of Permselective Membrane by Mean of a Radiation-Induced Grafting (방사선 그래프트에 의한 반투막 제조연구)

  • Young Kun Kong;Hoon Seun Chang;Chong Kwang Lee;Jae Ho Choi
    • Nuclear Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 1983
  • By controlling both the means of grafting and the cast-solution components, no degradation and dimensional change of radiation-induced graft polymerization were found. The electric resistance of styrene-cellulose acetate grafts increases with increasing styrene content, while those for the hydrophilic monomers show no marked effect. In comparison with the grafted cellulose acetate membrane by simultaneous irradiation method, the appearance of the grafted membrane by post-polymerization method was not markedly changed irrespective of the percent of grafting and radiation dose of electron beam or ${\gamma}$-ray. The combination of crosslinking agents such as divinyl benzene (OB) or trimethyl propane triacrylate (TMPT) in the VP:St:BPO system leads to gradual increase of the percent of grafting. The activation energy for grafting of St:VP:BPO solution onto cellulose acetate membrane was determined to be about 21.8 Kcal/mole over the range of 55$^{\circ}$-8$0^{\circ}C$. The initial rate of grafting (in %/hr) is proportional to the power 0.76 for dose intensities.

  • PDF

Preparation and Characteristics of a Single-layer PVA Laminated CTA/PCL Membrane for Oxygen Biosensor Electrode (산소센서용 CTA/PCL 효소고정화막과 반투막을 단일화한 PVA적층막의 제조 및 특성)

  • Seo, Jong-Won;Kim, Tae-Jin;Jeong, Yong-Seob;Yoon, Jeong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.247-252
    • /
    • 1999
  • The oxygen electrode of a biosensor needs enzyme immobilized membrane and a dialysis membrane to measure the oxygen concentration that remains after an enzyme reacts with its substrate. Accodingly, a single-layer PVA laminated CTA/PCL membrane was developed as an oxygen biosensor electrode. The enzymes were immobilized on a cellulose triacetate/polycarprolactone membrane using the 1,1'-carbonyl diimidazole(CDI) method, and then laminated with polyvinyl alcohol, aldehyde and acid. The alcohol oxidase and PVA laminated CTA/PCL membrane was tested with various concentration of enzyme substrates using a Yellow Springs Instrument(YSI) oxygen sensor. Under 5-10mmol substrates produced $0.37{\sim}0.83{\mu}A$(r=0.995) currents, and ater 8 weeks the glucose oxidase activity remained at about 56%, while the other activities remained very low. A SEM indicated a smooth surface and tightly attached PVA on the enzyme-immobilized CTA/PCL membranes.

  • PDF

Physiological Function in vitro of Biopolymer from Bacillus coagulans CE-74 (Bacillus coagulans CE-74에 의해 생산된 Biopolymer의 생리적 기능성)

  • Lee, Seon-Ho;Choi, Hee-Jin;Son, Jun-Ho;Bae, Du-Kyung;Bae, Jong-Ho;Kim, Sung;An, Bong-Jeon;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.44 no.3
    • /
    • pp.137-142
    • /
    • 2001
  • In order to prove physiological function of biopolymer from Bacillus coagulans CE-74, in vitro experiments simulating the passive membrane transport of gastrointestinal tract were carried out using dialysis membrane. And inhibition effect of isolated biopolymer on tyrosinase and angiotensin converting enzyme (ACE) were observed. The glucose retardation index after 30 min dialysis was 43.5% in the presence of 2% biopolymer. As the dialysis period became longer, the retarding effect toward glucose absorption decreased and the effect was close to zero after 5 hr dialysis. The bile acid retardation index after 30 min dialysis was 34% and 44.2% in the presence of 1% and 2% biopolymer, respectively. The effect decreased as the dialysis time elapsed. It was measured by arosinase inhibition activity of biopolymer that inhibition effect was 48.5% in $20\;{\mu}g/{\mu}l$. In a ACE inhibition activity, biopolymer showed inhibition activity as 97% in $10\;{\mu}g/{\mu}l$.

  • PDF

Physiological Function in vitro of ${\beta}-Glucan$ Isolated from Barley (보리가루에서 분리한 ${\beta}-Glucan$의 생리적 기능성)

  • Oh, Hee-Jung;Lee, Su-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.689-695
    • /
    • 1996
  • In order to prove physiological function of ${\beta}-Glucan$ isolated from barley flour by enzymatic method, in vitro experiments simulating the passive membrane transport of gastrointestinal tract were carried out using dialysis membrane. The yield of ${\beta}-Glucan$ from barley flour was $6.2{\%}$ and its constituents were determined to give $81.6{\%}$ total dietary fiber, $72.9{\%}$ soluble dietary fiber, $8.7{\%}$ insoluble dietary fiber, $8.5{\%}$ moisture, $2.5{\%}$ protein and $7.4{\%}$ ash. The water holding capacity of the ${\beta}-Glucan$ preparation was 6 g water/g dry material. The glucose retardation index after 30 minute dialysis was $13.5{\%}$ in the presence of $3{\%}$ ${\beta}-Glucan$. As the dialysis period became longer, the retarding effect toward glucose absorption decreased and the effect was close to zero after 2 hour dialysis. The bile acid retardation index after 30 minute dialysis was 3, 12 and $18{\%}$ in the presence of 1, 3 and $5{\%}$ ${\beta}-Glucan$, respectively. The effect was higher than the glucose retardation index and decreased as the dialysis time elapsed.

  • PDF

Effect of Heat Treatments on Physical Properties and in vitro Glucose, Bile Acid, and Cadmium Transport Retardation of Wax Gourd (Benincasa hispida) (동아의 물리적 특성 및 in vitro 포도당, 담즙산, 카드뮴 투과억제 효과에 대한 열처리 영향)

  • Ju, In-Ok;Jung, Gi-Tai;Ryu, Jeong;Kim, Young-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.1117-1123
    • /
    • 2003
  • The effects of heat treatment on the physical and physical and physiological properties of wax gourd (Benincasa hispida) were examined. The applied heat treatments were autoclaved at $121^{\circ}C$ for 1 hr, boiled for 30 min, and microwaved at 680 W for 5 min. The water retention capacity (WRC) of the wax gourds was 9.43 g/g for the microwaved samples, 5.12 g/g for the boiled samples, 4.63 g/g for the raw samples, and 2.61 g/g for the autoclaved samples. Heat treatment caused to increase swelling by up to $4.4{\sim}7.8\;mL/g$. Calcium binding capacity of heat-treated wax gourd increased in the order of microwaved, boiled, raw, autoclaved samples. Scanning electron microscopy (SME) showed that autoclaving caused the most severe structural modifications, while microwave treatment produced the least modifications. The retarding effect on glucose and bile acid transport depended on the heat treatment. Only boiling showed the glucose retardation effect. Bile acid retardation effect increased in order of boiling (22.9%), autoclaving (17.1%), microwave treatment (14.3%), and raw wax gourd (8.6%). The cadmium retardation effect was significantly high in all samples.

Physiological Characteristics of Resistant Starch (HI-MAIZE DIET) Fortified with Other Dietary Fiber Components (식이섬유의 기능이 강화된 저항전분 (HI-MAIZE DIET)의 생리적 특성)

  • Choi, Yang-Mun;Oh, Sung-Hoon;Yu, Kwang-Won;Shin, Kwang-Soon;Ra, Kyung-Soo;Park, Chul-Soo;Kim, Kyung-Mi;Suh, Hyung-Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.3
    • /
    • pp.351-355
    • /
    • 2005
  • This study was performed to investigate the influences of resistant starch (HM: HI-MAIZE) and HM-D (HI-MAIZE DIET) fortified with D-factor (consisted of Psyliium husk, polydextrose and hydrocitric acid) on the glucose and bile acid absorption and production of short chain fatty acids (SCFA). HM-D absorbed more glucose and bile acid than did HM. The glucose transport of HM and HM-D against dialysis membrane showed 77% and 68% for 4h, respectively. After 24h, bile acid transport of HM and HM -D showed 65% and 62.3%, respectively. The HM and HM-D produced 217.8 mM and 264.0mM of SCFA, respectively. The production of butyric acid in HM-D (32.7mM) showed higher than that of HM (26.9mM). The addition of D-factor to HM increased the physiological function of dietary fiber through the glucose and bile acid absorption and production of SCFA.