• Title/Summary/Keyword: 반추위미생물

Search Result 81, Processing Time 0.023 seconds

Isolation and Identification of Rumen Fungus and Its Produced Conjugated Linoleic Acid (반추위에서 분리한 곰팡이의 Conjugated Linoleic Acid 생산과 ITS-1 영역의 염기서열 해석)

  • Nam, In-Sik
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.111-115
    • /
    • 2007
  • The aim of this study was to isolate and identify men fungus which produces conjugated linoleic acid. IS-13 fungus hydrogenated conjugated linoleic acid and trans-11 vaccenic acid within 12 hr after addition of linoleic acid. The homology of IS-13 rumen fungus was compared with internal transcribed spacer 1 region (ITS1)sequences of twenty three men fungi. The length of ITS1 region of IS-13 isolate was 218 bp. IS-13 isolate has the most similar sequence (98% matched) with Orpinomyces species according to maximum-likehood and distance matrix results. The result supported that IS-13 isolate belonged to Orpinomyces genus.

Effect of Herbal Extracts on the Ruminal Dry Matter Digestibility, Volatile Fatty Acid Production and Growth Rate of Microbes in Vitro (한약재 추출물이 반추위 in vitro 건물소화율, 휘발성 지방산 생성 및 미생물 성장률에 미치는 영향)

  • Moon, Yea-Hwang
    • Journal of agriculture & life science
    • /
    • v.43 no.6
    • /
    • pp.67-75
    • /
    • 2009
  • This study was conducted to investigate the effect of herbal (Obtusifolia, Cinnamon, Chinese pepper, Licorice) extracts on the rumen fermentation in vitro. Comparing to the control, in vitro dry matter digestibility was significantly (P<0.05) decreased at zero hour in the Cinnamon and the Chinese pepper, and at three hour after supplementation in the Licorice. The ratio of volatile fatty acids were significant (P<0.05) differences at 3 hour after fermentation only, acetic acid was higher (P<0.05) in the control compare to the herbal extract treatments, but the ratios of butyrate, iso-butyrate, iso-valerate and valerate were lowest in the control. The growth rate of rumen microbes in vitro was significantly (P<0.05) higer in the herbal extract treatments excluding the Obtusifolia than the control during three hour fermentation, but was not significant difference among treatments in the other fermentation times. From above results, even though the extracts of Cinnamon, Chinese pepper and Licorice inclined to inhibit the activity of rumen microbes during early fermentation period, but did not affect on the growth rate of rumen microbes in vitro.

The Effects of Negative- and Positive- Charged Surfactants on In vitro DM Digestibility and the Growth of Ruminal Mixed Microorganisms (양(+) 이온성 및 음(-) 이온성 계면활성제 첨가가 반추위 혼합 미생물에 의한 In vitro 건물소화율 및 미생물 성장에 미치는 영향)

  • Lee, S.J.;Shin, N.H.;Kim, W.Y.;Moon, Y.H.;Kim, H.S.;Ha, J.K.;Lee, S.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.647-656
    • /
    • 2007
  • In order to investigate the effects of supplemental ionic surfactants in in vitro ruminal fermentation, N-Lauroylsarcosine sodium salt(N-LSS) and sodium dodecyl sulfate(SDS) for negative(-) ionic surfactant, and hexadecylpyridinium chloride monohydrate(HPCM) and hexadecyltrimethyl ammonium bromide(HTAB) for positive (+) ionic surfactant were supplemented by 0.05% and 0.1% into the Dehority’s artificial medium containing rice straw(1mm) as a substrate. In vitro DM digestibility, the growth of rumen mixed microbes, pH, cumulative gas production and SEM(Scanning Electron Microscopy) observation of microbial attachment on rice straw particle were investigated through the experiment composing 9 treatments (two supplemental levels of two positive ionic(+) surfactant, two supplemental levels of two negative(-) ionic surfactant) including the control. The sample collection was at 6, 12, 24, 48 and 72 h post fermentation with 3 replications per treatments. DM digestibility in treatments supplemented (+) or (-) surfactants almost stopped afterward 12 h fermentation, in vitro DM digestibility at 72 h post fermentation in the ionic surfactants was at half level of that of the control(P<0.05). Accumulative gas production in in vitro was less(P<0.05) with addition of ionic surfactants compared to the control. The amount of rumen mixed microbes recovered from in vitro incubation fluid pleateaued at 12 h post fermentation for the positive (+) ionic surfactants, but steadily increased as fermentation time elapsed for the control. Rumen microbial growth rate was significantly(P<0.05) low in the negative(-) ionic surfactant compared to the control. pH of the incubation fluid was ranged from 6.02 to 7.20, and was the highest in the negative(-) ionic surfactants, and was the lowest in the control(P<0.05). In SEM observation, rumen microbial population attached on rice straw particle was less with addition of ionic surfactants than the control. In conclusion we could not found any positive effects of negative- and positive- charged surfactants on rumunal fermentation characteristics and rumen microbial growth rates.

Effects of Biologically Active Materials Prepared for Several Minerals and Plants on the Growth of Rumen Microbes (무기물성 및 식물성 생리활성 물질이 반추위 미생물의 성장에 미치는 영향)

  • Shin, Sung-Whan;Lee, Shin-Ja;Ok, Ji-Un;Lee, Sang-Min;Lim, Jung-Hwa;Kim, Kyoung-Hoon;Moon, Yea-Hwang;Lee, Sung-Sill
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1555-1561
    • /
    • 2007
  • In order to know the effects of scoria, germanium, charcoal, ginger, stevia, and CLA(Conjugated Linoleic Acid) as biologically active materials on pathogenic microbes and rumen anaerobic microbes, the growth rate of pathogens (including Escherichia coli O157, Salmonella paratyphi, Listeria monocytogenes and Staphylococcus aureus) and in vitro lumen microbial growth, gas production, ammonia concentration, carboxymethyl-cellulase (CMCase) activity, and microbial populations were investigated. The growth of pathogenic microbes was inhibited by the supplement of 0.10% ginger. Ginger had powerful antimicrobial properties on all the pathogens used in this experiments. Additionally in the antibacterial assay by paper disc method, we could observe the clear zone of similar area with the positive control(antibiotics) for E. coli as applied with the 10% stevia or the 10% CLA only. The supplements of ginger, stevia and CLA in vitro rumen fermentation inhibited populations of rumen bacteria and protozoa. Particularly supplement of ginger resulted in remarkable reduction of the protozoa population, which means it might serve as a source inhibiting material of methane creation in the rumen.

Effects of the Artificial Culture Medium of Wild Ginsengs on Rumen Fermentation Characteristics In Vitro (산삼배양액 이용에 관한 반추위 미생물 대사 연구)

  • Bae, G.S.;Nam, K.P.;Kim, H.S.;Lee, S.G.;Choi, H.S.;Min, W.K.;Joo, J.W.;Maeng, W.J.;Chang, M.B.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.987-996
    • /
    • 2003
  • This study was conducted to determine the effects of the artificial culture medium of wild-ginsengs on in vitro fermentation characteristics. NH$_3$-N concentration was showed the highest in 3% WGM treatment among all treatments and control. In addition, microbial protein synthesis was significantly different in all treatments throughout the incubation time, and WGM 3% treatment was the highest at the 9 h incubation(P〈0.05). Protozoa numbers within rumen were decreased in all WGM treatments at 9 h incubation time, whereas WGM 3% treatment was always decreased throughout the incubation(P〈0.05). NDF and ADF digestibility were proportionally increased as the incubation time in both control and treatments. NDF digestibility showed no significantly difference between control and the 3% treatment, and ADF digestibility was similar in all. Total volatile fatty acid(VFA) concentrations of WGM treatments without 5% were significantly higher than control (P〈0.05). No differences were observed in total VFA, acetate, propionate and butyrate concentration among the WGM treatments. Acetate/Propionate ratio of WGM treatments was higher than control after 12 h incubation(P〈0.05). As a result of the artificial culture medium of wild-ginseng on rumen fermentation characteristics in vitro, microbial protein synthesis of WGM treatment was higher than control, and WGM 3% was the highest in all treatments(P〈0.05). The effect of saponin in artificial culture medium of wild-ginseng tended to decrease NH$_3$-N concentration, while it increases the microbial synthesis in early incubation. Therefore, artificial cultures medium of wild-ginseng can increase utilization of feed by microbial and anti-protozoal effects of saponin, which may enhance microbial synthesis capacity in early fermentation period in rumen.

The Role of Glutamic Acid-producing Microorganisms in Rumen Microbial Ecosystems (반추위 미생물생태계에서의 글루탐산을 생성하는 미생물의 역할)

  • Mamuad, Lovelia L.;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.31 no.5
    • /
    • pp.520-526
    • /
    • 2021
  • Microbial protein is one of the sources of protein in the rumen and can also be the source of glutamate production. Glutamic acid is used as fuel in the metabolic reaction in the body and the synthesis of all proteins for muscle and other cell components, and it is essential for proper immune function. Moreover, it is used as a surfactant, buffer, chelating agent, flavor enhancer, and culture medium, as well as in agriculture for such things as growth supplements. Glutamic acid is a substrate in the bioproduction of gamma-aminobutyric acid (GABA). This review provides insights into the role of glutamic acid and glutamic acid-producing microorganisms that contain the glutamate decarboxylase gene. These glutamic acid-producing microorganisms could be used in producing GABA, which has been known to regulate body temperature, increase DM intake and milk production, and improve milk composition. Most of these glutamic acid and GABA-producing microorganisms are lactic acid-producing bacteria (LAB), such as the Lactococcus, Lactobacillus, Enterococcus, and Streptococcus species. Through GABA synthesis, succinate can be produced. With the help of succinate dehydrogenase, propionate, and other metabolites can be produced from succinate. Furthermore, clostridia, such as Clostridium tetanomorphum and anaerobic micrococci, ferment glutamate and form acetate and butyrate during fermentation. Propionate and other metabolites can provide energy through conversion to blood glucose in the liver that is needed for the mammary system to produce lactose and live weight gain. Hence, health status and growth rates in ruminants can be improved through the use of these glutamic acid and/or GABA-producing microorganisms.

Study on the Relationship between Utilization of Nutrients in the Rumen and Rumen Microorganisms by Dietary Energy and Protein Source (에너지와 단백질(蛋白質) 공급원(供給源)에 의(依)한 반추위내(反芻胃內) 영양소(營養素) 이용성(利用性) 및 반추위미생물(反芻胃微生物)에 관(關)한 연구(硏究))

  • Chee, Sul Ha;Lee, Sang Cheol;Jeong, Ha Yeon
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.2
    • /
    • pp.188-205
    • /
    • 1996
  • This study was conducted to examine the effects of dietary energy and protein sources on the rumen microbial population of sheep. The results obtained were summarized as the follows; 1. Ruminal pH was highest in sheep fed the diet rapidly degraded in the rumen(F-F) as a energy (barley plus beet pulp) and protein source (rapeseed meal), and lowest in the diet (F-S) of rapidly degradable energy source plus slowly degradable protein source (corn gluten meal + cotton seed meal) without affecting by postfeeding time. 2. Ruminal ammonia concentration was higher in corn (slowly degradable) for energy source and rapeseed meal (rapidly degradable) for protein source (S-F) than others, and abruptly increased at 1 hr after feeding regardless of treatments. 3. Concentration of ruminal total volatile fatty acid, acetate and propionate were highest in F-S and peaked at 1 hr after feeding firstly and formed second peak at 9hrs, respectively. 4. Digestibilities of the proximates and ADF were not affected by treatment but NDF was highest in F- F. 5. Nitrogen retention was highest in S-F and lowest in F-F and F-S. 6. Digestibility and metabolizability of energy, contents of OCP, TDN, DE and ME were not affected by treatment.

  • PDF

Effects of Heat-stress on Rumen Bacterial Diversity and Composition of Holstein Cows (고온 스트레스 영향에 따른 홀스타인종 젖소의 반추위내 미생물 균총 변화)

  • Kim, Dong Hyeon;Kim, Myung Hoo;Kim, Sang Bum;Ha, Seung Min;Son, Jun Kyu;Lee, Ji Hwan;Hur, Tai Young;Lee, Jae Yeong;Park, Ji Hoo;Choi, Hee Chul;Lee, Hyun Jeong;Park, Beom Young;Ki, Kwang Seok;Kim, Eun Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.227-234
    • /
    • 2019
  • This study was performed to investigate the effect of heat-stressed environment on rumen microbial diversity in Holstein cows. Rectal temperature and respiration rate were measured and rumen fluid was collected under normal environment (NE; Temperature humidity index (THI)=64.6) and heat-stressed environment (HE; THI=87.2) from 10 Holstein cows (60±17.7 months, 717±64.4 kg) fed on the basis of dairy feeding management in National Institute of Animal Science. The rumen bacteria diversity was analyzed by using the Illumina HiSeqTM 4000 platform. The rectal temperature and respiratory rate were increased by 1.5℃ and 53 breaths/min in HE compared to that in NE, respectively. In this study, HE exposure induced significant changes of ruminal microbe. At phylum level, Fibrobacteres were increased in HE. At genus level, Ruminococcaceae bacterium P7 and YAD3003, Butyrivibrio sp. AE2032, Erysipelotrichaceae bacterium NK3D112, Bifidobacterium pseudolongum, Lachnospiraceae bacterium FE2018, XBB2008, and AC2029, Eubacterium celulosolvens, Clostridium hathewayi, and Butyrivibrio hungatei were decreased in HE, while Choristoneura murinana nucleopolyhedrovirus, Calothrix parasitica, Nostoc sp. KVJ20, Anabaena sp. ATCC 33047, Fibrobacter sp. UWB13 and sp. UWB5, Lachnospiraceae bacterium G41, and Xanthomonas arboricola were increased in HE. In conclusion, HE might have an effect to change the rumen microbial community in Holstein cows.

The Study on the Relationship between Changes of Rumen Microflora and Bloat in Jersey Cow (저지종 젖소의 반추위 내 미생물 균총 변화와 고창증 발병간의 상관관계 연구)

  • Kim, Sang Bum;Oh, Jong Seok;Jeong, Ha Yeon;Jung, Young Hun;Park, Beom Young;Ha, Seung Min;Im, Seok Ki;Lee, Sung Sill;Park, Ji Hoo;Park, Seong Min;Kim, Eun Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.2
    • /
    • pp.106-111
    • /
    • 2018
  • This study was conducted to investigate the relationship between changes of rumen microflora and bloat in Jersey cow. Jersey cows (control age: 42 months, control weight: 558kg; treatment age: 29 months, treatment weight 507kg) were fed on the basis of dairy feeding management at dairy science division in National Institute of Animal Science. The change of microbial population in rumen was analyzed by using next generation sequencing (NGS) technologies due to metabolic disease. The diversity of Ruminococcus bromii, Bifidobacterium pseudolongum, Bifidobacterium merycicum and Butyrivibrio fibrisolvens known as major starch fermenting bacteria was increased more than 36-fold in bloated Jersey, while cellulolytic bacteria community such as Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens was increased more than 12-fold in non-bloated Jersey. The proportion of bacteroidetes and firmicutes was 33.4% and 39.6% in non-bloated Jersey's rumen, while bacteroidetes and firmicutes were 24.9% and 55.1% in bloated Jersey's. In conclusion, the change of rumen microbial community, in particular the increase in starch fermenting bacteria, might have an effect to occur the bloat in Jersey cow.