• Title/Summary/Keyword: 반응 조건 최적화

Search Result 744, Processing Time 0.029 seconds

Optimization of the Expression of the Ferritin Protein Gene in Pleurotus eryngii and Its Biological Activity (큰느타리버섯에서 석충 페리틴 단백질 유전자의 발현 최적화 및 생물학적 활성)

  • Woo, Yean Jeong;Oh, Si Yoon;Choi, Jang Won
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • To optimize the expression and secretion of ferritin protein associated with ion storage in the mushroom, Pleurotus eryngii, a recombinant secretion vector, harboring the ferritin gene, was constructed using a pPEVPR1b vector under the control of the CaMV 35S promoter and signal sequence of pathogen related protein (PR1b). The ferritin gene was isolated from the T-Fer vector following digestion with EcoRI and HindIII. The gene was then introduced into the pPEVPR1b secretion vector, and it was then named pPEVPR1b-Fer. The recombinant vector was transferred into P. eryngii via Agrobacterium tumefaciens-mediated transformation. The transformants were selected on MCM medium supplemented with kanamycin and its expression was confirmed by SDS-PAGE and western blotting. Expression of ferritin protein was optimized by modifying the culture conditions such as incubation time and temperature in batch and 20 L airlift type fermenter. The optimal conditions for ferritin production were achieved at 25℃ and after incubating for 8 days on MCM medium. The amount of ferritin protein was 2.4 mg/g mycelia, as measured by a quantitative protein assay. However, the signal sequence of PR1b (32 amino acids) seems to be correctly processed by peptidase and ferritin protein may be targeted in the apoplast region of mycelia, and it might not be secreted in the culture medium. The iron binding activity was confirmed by Perls' staining in a 7.5% non-denaturing gel, indicating that the multimeric ferritin (composed of 24 subunits) was formed in P. eryngii mycelia. Mycelium powder containing ferritin was tested as a feed additive in broilers. The addition of ferritin powder stimulated the growth of young broilers and improved their feed efficiency and production index.

Processing Optimization and Antioxidant Activity of Chocolate Added with Mulberry (오디 초콜릿의 제조 최적화 및 항산화 활성)

  • Park, So-Yeon;Joo, Na-Mi
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • The purpose of this study was to determine the optimal mixing conditions for two different amounts of added mulberry powder and fresh cream to prepare functional chocolate with added mulberry powder. The experiment was designed according to the central composite response surface design, which showed 10 experimental points, and included two replicates for mulberry powder and fresh cream. The physiochemical, mechanical, and sensory properties of the test were measured, and these values were applied to the mathematical models. The results of the physiochemical and mechanical analyses of each sample, including pH, moisture content, total phenolic content, DPPH free radical scavenging activity, color L, color b, hardness, gumminess, and cohesiveness showed significant differences. The sensory characteristics of the samples tested were significantly different in flavor, texture, sourness, bitterness, and overall acceptability. The optimum formulation calculated by numerical and graphical methods was 25.76 g mulberry powder and 72.21 g fresh cream.

Process Optimization for the Industrialization of Transparent Conducting Film (투명 전도막의 산업화를 위한 공정 최적화)

  • Nam, Hyeon-bin;Choi, Yo-seok;Kim, In-su;Kim, Gyung-jun;Park, Seong-su;Lee, Ja Hyun
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.

Optimization of Extraction Conditions for Mate (Ilex paraguarensis) Ethanolic Extracts (Mate (Ilex paraguarensis) 에탄올 추출물의 추출조건 최적화)

  • Yang, Su-Jin;Youn, Kwang-Sup;No, Hong-Kyoon;Lee, Shin-Ho;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.319-327
    • /
    • 2011
  • This study was conducted to monitor the quality characteristics of mate (Ilex paraguarensis) ethanolic extracts via the response surface methodology. In the extraction conditions that were based on the central composite design with variations in the ethanol concentration (0-100%), extraction temperature($35-95^{\circ}C$), and the ratio of the solvent to the sample (10~30 mL/g). The extraction yield and total polyphenol content improved with the increase in the ethanol concentration than in the extraction temperature. The caffeic acid content increased with the decrease in the solvent ratio. The coefficients of determinations ($R^2$) were 0.8842 (p<0.05), 0.8729 (p<0.05), and 0.9205 (p<0.05) in terms of the electron donating ability, nitrite scavenging effect (pH 3.0), and SOD-like ability, respectively. The estimated conditions for the maximized extraction, including in terms of the yield, total polyphenol content, caffeic acid content, and electron donating ability, were a 21-48% ethanol concentration, a $76.4^{\circ}C$ extraction temperature, and 10-14mL/g solvent-to-sample ratio.

Optimization of Skim Milk Fermentation Conditions by Response Surface Methodology to Improve ACE Inhibitory Activity Using Lactiplantibacillus plantarum K79 (반응표면법에 의한 Lactiplantibacillus plantarumK79를 이용한 ACE(Angiotensin Converting Enzyme) 억제활성 향상을 위한 탈지유 발효조건 최적화)

  • Park, Yu-Kyoung;Hong, Sang-Pil;Lim, Sang-Dong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.93-102
    • /
    • 2022
  • This study was conducted using response surface methodology (RSM) to elucidate fermentation conditions that will optimize ACE inhibitory activity using Lactiplantibacillus plantarum K79. Four independent variables [skim milk (with 1% added glucose) concentration (6%-14%), incubation temperature (32℃-42℃), incubation time (8-24 h), and amount of added starter (0.02%-0.2%)] were evaluated using five-level central composite design and response surface methodology to determine the optimum fermentation condition. The dependent variables were angiotensin converting enzyme (ACE) inhibitory activity (the value obtained from 102 diluted supernatant), and pH. The respective coefficients of determinations (R2) were 0.791 and 0.905 for ACE inhibitory activity and pH. The maximum ACE inhibitory activity was 90% under the following conditions: 10% skim milk (with 1% added glucose) concentration, 37℃ incubation temperature, 17.8 h incubation time, and 0.2% added starter. Based on the RSM, using predicted best ACE conditions for fermentation of 13.49% skim milk (with 1% added glucose) with 0.0578% starter at 33.4℃ for 21.5 h, the predicted ACE inhibitory activity and pH values were 86.69% and 4.6, respectively. Actual ACE inhibitory activity and pH values were 85.5% and 4.58, respectively

Treatment of Waste Air Containing Malodor and VOC: 2. Effect of Light-intensity on the Photocatalytic Removal Efficiency of Malodor and VOC of Waste Air (악취 및 VOC를 함유한 폐가스의 광촉매 처리: 2. 광도의 폐가스 처리효율에 대한 영향)

  • Lee, Eun Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.952-959
    • /
    • 2012
  • The photocatalytic reactor was designed to have improved efficiency by enhancing a light intensity of photocatalytic reactor using a reflector coated on the surface at the outer radius of annular shaped photocatalytic reactor. The improved photocatalytic reactor performed to treat waste air containing malodor and VOC with the enhanced light intensity, of which the effect on their removal efficiency was investigated. The intensities of illumination of the improved photocatalytic reactor filled with porous silica-based media and nonporous glass bead media carrying photocatalyst were observed to increase by 28.5% and 30.1%, respectively, compared to those of photocatalytic reactor without any reflector. Using the improved photocatalytic reactor filled with porous silica-based media and nonporous glass bead media carrying photocatalyst, the removal efficiencies were enhanced by 2~3% and insignificantly, respectively. The removal efficiencies of the optimized photocatalytic reactor with reflectors, filled with porous silica-based media carrying photocatalyst, were observed to increase by 26% and 60%, compared to those of photocatalytic reactor (i.e., 19% and 53%), without any reflector, filled with nonporous glass bead media carrying photocatalyst, for hydrogen sulfide and toluene, respectively. The roughness of used reflector surface was measured to be ca. four times as big as that of a commercial mirror. However, their removal efficiencies are expected to be enhanced by increasing an light intensity resulting from lowering the roughness of used reflector coated on the improved photocatalytic reactor in the future.

Optimization of Heating and Addition of Water, Oil and Dextrin for Uncompressed SPI Tofu Preparation (비압착식 SPI 두부의 제조를 위한 가열 및 수분, 기름, 덱스트린 첨가의 최적화)

  • Kim, Woo-Jung;Ku, Kyung-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-43
    • /
    • 1994
  • Optimization study was conducted for preparation of uncompressed soy protein isolate(SPI) tofu in the aspects of water addition ratio, second heating temperature and amounts of oil and dextrin added. The SPI tofu was prepared without compression step with SPI-oil-dextrin mixture and $CaSO_4-GDL$ mixed coagulants. The data were statistically analyzed by multiple regresstion and response surface methodology(RSM). Addition of dextrin increased the hardness of tofu, particularly for the second heating at $85^{\circ}C$ and 8 times of water to SPI. RSM figure showed that the effect of dextrin on hardness became to be less as the heating temperature increased. The hardness increase effect was no significant except addition of 25% oil and 8 times of water and second heating at $85^{\circ}C$. The addition of 25% oil and $10{\sim}15%$ dextrin and second heating at $90^{\circ}C$ for $45{\sim}60$ minutes resulted hardness and cohesive tofu. The optimal method proposed for uncompressed SPI tofu on the basis of textural and sensory properties was first heating of homogenized SPI-oil-dextrin(100:25:15) with addition of 8 times of water(on the basis of SPI) at $100^{\circ}C$ for 6 minutes, cooling to $40^{\circ}C$, additon of mixed coagulants of $CaSO_{4}-GDL$(0.07 g, 0.0075 g/SPI) and second heating at $90^{\circ}C$ for 45 minutes.

  • PDF

Optimization of Preparation Conditions and Quality Characteristics of Sweet Pumpkin Stock (단호박 스톡 제조조건의 최적화 및 품질 특성)

  • Han, Chi-Won;Park, Won-Jong;Seung, Suk-Kyung
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.832-839
    • /
    • 2008
  • The stock that is the first step for preparation of soups and purees links to the taste of food. Many types of vegetable have been used in stocks, but this study focused on stocks prepared with sweet pumpkin. The stock preparation conditions including the weight of sweet pumpkin, the water volume, and the boiling time at $97^{\circ}C$ were optimized by response surface methodology. The quality characteristics of the resulting stock were investigated. The color, flavor, taste and overall acceptability were dependent parameters. A model equation was proposed with regard to the sweet pumpkin weight, water volume, and boiling time at $97^{\circ}C$. A sweet pumpkin weight of 357.9 to 403.0 g, a water volume of 689.8 to 768.5 mL, and a boiling time of 9.9 to 10.3 min at $97^{\circ}C$ were found to be the optimal stock preparation conditions. The quality characteristics of the sweet pumpkin stock prepared under the optimized conditions were pH 6.64, total acidity 0.18%, soluble solids $2.39\;^{\circ}Brix$, color value (L, 99.07 a, -2.43 b, 11.82), total polyphenol 280.75 mg/L, and electron donating ability 21.32%.

Optimization of Fermentation Conditions for the Manufacture of Wild Grape Wine (산머루주 제조를 위한 발효조건의 최적화)

  • Kim, Seong-Ho
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.24-37
    • /
    • 2008
  • Yeast with excellent ferment ability was isolated and selected from wild grape to manufacture wild grape wine. Wild grape wine by SMR-3 isolated from wild grape was better than other strains in quality, such as high alcohol content and low acidity, residual sugar, organic acid and fusel oil content. Fermentation condition was optimized to manufacture wild grape wine with response surface methodology using isolated SMR-3 as an alcohol fermentation strain. As a result of culture conditions, 10.61% of alcohol content was expected under the conditions of $21.91^{\circ}C$ fermenting temperature, $21.48^{\circ}brix$ of initial sugar content, and 14.65 day of fermentation time. Residual sugar content showed the lowest value at $24.48^{\circ}C$ fermentation temperature, $12.78^{\circ}brix$ of initial sugar content, and 9.02 day fermentation time. The highest level of sensory evaluation was found at $20.23^{\circ}C$ fermentation temperature, $25.30^{\circ}brix$ of initial sugar content, and 5.94 day fermentation time. Ethyl alcohol was the main alcohol component in wild grape wine and fusel oil in wild grape wine was hardly detected; thus, the quality of wild grape wine was considered excellent. The optimal fermentation conditions of wild grape wine was superimposed by deriving a regression equation for alcohol content, fusel oil, ethyl alcohol content, and overall palatability for each variable of wild grape wine. Hence, the optimal fermentation conditions are estimated to be: fermentation temperature $24{\sim}28^{\circ}C$, initial sugar content $20{\sim}24^{\circ}brix$, and fermenting time $12{\sim}14$ days.

Optimization of the extraction procedure for quantitative analysis of saponarin and the artificial light condition for saponarin production from barley sprout (고함량 사포나린 함유 보리 어린 순 재배를 위한 식물공장내 인공광 조건 및 사포나린 추출 분석법 최적화)

  • Oh, Kyeong-Yeol;Song, Yeong Hun;Lee, Duek-Yeong;Lee, Tae-Geun;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.197-203
    • /
    • 2021
  • Saponarin is a crucial component of barley sprout, and the production and quantitative analysis are issued to date. In this study, the optimal saponarin extraction conditions were presented on the subject of acetonitrile, ethanol, methanol, and water for the quantitative analysis in barley sprout through the extraction efficiency compared with the solvent concentration and extraction time using the reaction surface methodology. The optimal extraction time and solvent condition for saponarin were 3.9 h and 53.7% of aqueous methanol, respectively. In addition, the effect of LED artificial light on the saponarin production in barley sprouts was evaluated by the light cycle, light quantity, and light quality. The optimal cultivation conditions under artificial light for the growth of barley sprout and saponarin production were most effectively achieved on 220-320 μmol m-2 s-1 of the light quantity with 8 h day-1 of a daylight cycle under 6500K LED combined with red light. Furthermore, blue light was evaluated as the main factor in the biosynthesis of saponarin.