• Title/Summary/Keyword: 반응 조건 최적화

Search Result 744, Processing Time 0.027 seconds

Binary transition metal sulfides hierarchical multi-shelled hollow nanospheres with enhanced energy storage performance (향상된 에너지 저장 능력을 가진 이중 전이금속 황화물 계층적 중공 구조의 나노구)

  • Lee, Young Hun;Choi, Hyung Wook;Kim, Min Seob;Jeong, Dong In;Tiruneh, Sintayehu Nibret;Kang, Bong Kyun;Yoon, Dae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.112-117
    • /
    • 2018
  • The metal alkoxide, CuCo-glycerate nanospheres (NSs), were successfully synthesized as Cu-Co bimetallic sulfides hierarchical multi-shelled hollow nanospheres ($CuCo_2S_4$ HMHNSs) through solvothermal synthesis. In this reaction mechanism, the solvothermal temperature and the amount of glycerol as a cosurfactant play significant role to optimize the morphology of CuCo-glycerate NSs. Furthermore, $CuCo_2S_4$ HMHNSs were obtained under optimized sulfurization reaction time of 10 h via anion exchange reaction between glycerate and sulfur ions. Finally, the structural and chemical compositions of CuCo-glycerate NSs and $CuCo_2S_4$ HMHNSs were confirmed through field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and electrochemical performances.

Optimization of Sikhe Processing using the Obtained Data by Biosensor (바이오센서 계측 결과를 이용한 식혜제조의 최적화)

  • Kim, Hee-Kyung;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.65-72
    • /
    • 2002
  • This study was to determine the optimum conditions of malt extracting temperature, extracting time of malt in water, ratio of malt to water, and rice volume of malt extract water on saccharification in producing sikhe (sweet rice drink) using central composite design of response surface methodology. Glucose and maltose were analyzed by a biosensor having dual cathode system. The optimum temperatures of malt extracting for glucose and maltose were 60 and $55^{\circ}C$. The saccharification power for the two sugars was highest when malt powder soaked for 6.5 and 5.75 hour, respectively. And ratios of malt to water for optimum saccharification were 1 : 6.3 to 1 : 8.8, respectively. The optimum volumes of malt extracting to rice for the two sugars were 0.48% and 0.6%, respectively. The application of response surface methodology to sikhe processing showed a good correlation with high significance.

Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 2. Validation of Optimized Silylation of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane (자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 2. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 최적화 검증)

  • Lee, Eun Ju;Lee, Jong Hoon;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.409-418
    • /
    • 2017
  • In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation ($Na^+$) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of instrumental analysis, including FTIR, XRD, NMR and TGA, on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to FTIR analysis on S-Na-MMT-K, its peak-strengths of Si-O, -$NH_2$, -$CH_2$- and -OH, correlated with APS silylation-modification reaction, were compared each other. As a result, its optimal conditions including APS-MMT reacting period, APS-stirring period prior to APS-MMT reaction, APS concentration and reaction temperature were turned out to be 2~3 h, 20 min, 7.5 w/v% and $50^{\circ}C$, respectively. In addition, the optimal conditions induced from the results of TGA were also nearly consistent to those according to the results of FTIR analyses. These optimal conditions were turned out to be almost consistent to those drawn according to a criterion from XRD results suggested previously by Lee et al., by which the criterion was validated.

A Study on the Utilization of By-products from Honeyed Red Ginseng: Optimization of Total Ginsenoside Extraction Using Response Surface Methodology (홍삼정과 제조 부산물 이용에 관한 연구: 반응표면분석을 이용한 총 진세노사이드 추출조건의 최적화)

  • Lee, Eui-Seok;You, Kwan-Mo;Kim, Sun-Young;Lee, Ka-Soon;Park, Soo-Jin;Jeon, Byeong-Seon;Park, Jong-Tae;Hong, Soon-Taek
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • This study was carried out to extract ginsenosides in by-products from honeyed red ginseng. Response surface methodology (RSM) was used to optimize the extraction conditions. Based on D-optimal design, independent variables were ethanol (extraction solvent) concentration (30-90%, v/v), extraction temperature ($25-70^{\circ}C$), and extraction time (5-11 h). Extraction yield (Y1) and total ginsenosides (Y2) in the extract were analyzed as dependent variables. Results found that extraction yield increased with increasing extraction temperature and time, whereas it was decreased with increasing ethanol concentration. Similar trends were found for the content of ginsenosides in the extracts, except for ethanol concentration, which was increased with increasing ethanol concentration. Regression equations derived from RSM were suggested to coincide well with the results from the experiments. The optimal extraction conditions for extraction yield and total ginsenosides were an extraction temperature of $56.94^{\circ}C$, ethanol concentration of 57.90%, and extraction time of 11 h. Under these conditions, extraction yield and total ginsenoside contents were predicted to be 84.52% and 9.54 mg/g, respectively.

Molecular Dynamics Simulation Study of Lipase-catalyzed Esterification of Structural Butanol Isomers in Supercritical Carbon Dioxide (초임계 이산화탄소에서 리파아제-효소를 이용한 부탄올 구조이성질체의 에스테르화 반응의 분자 동역학 연구)

  • Kwon, Cheong-Hoon;Jeong, Jeong-Yeong;Song, Kwang Ho;Kim, Seon Wook;Kang, Jeong-Won
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.643-649
    • /
    • 2007
  • Lipase-catalyzed esterification of structural butanol isomers and n-butyric acid was investigated in supercritical carbon dioxide. The experiments were performed in a high pressure cell for 5 hrs with a stirring rate of 150 rpm at 323.15 K and 130 bar. The Candida Antarctica lipase B (CALB) was used in whole system as a catalyst. The experimental results were analyzed by GC-FID using a INNOWax capillary column. The conversion yield and the tendency of the esterification in supercritical carbon dioxide were compared with estimated results by molecular dynamics simulation. Based on the Ping-Pong Bi-Bi mechanism with competitive inhibition, each step of the reaction was optimized; using this result the transition state was predicted. Conformational preference of isomers was also analyzed using molecular dynamics simulations. This kind of approach will be further extended to the prediction of enzyme-catalyzed reactions using computers.

Studies on Microbial Penicillin Amidase (II) Characteristics and the Reactor Performance of Whole Cell Immobilized Penicillin Amidase of Escherichia coli (미생물 페니실린 아미다제에 관한 연구 (II) E. coli의 균체 고정화 페니실린 아미다제의 특성 및 반응조에 관한 연구)

  • Seong, Baik-Lin;Kim, Bong-Hee;Mheen, Tae-Iek;Moon H. Han
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.35-44
    • /
    • 1981
  • Whole cell penicillin amidase of Escherichia coli was immobilized by entrapment in gelatin followed by extrusion and crosslinking with glutaraldehyde. The immobilized engyme preparation demonstrated the recovery yield of activity up to 70% and good stability during storage and operation. The half life of activity decay during the operation was estimated to be about 50 days. The optimum pH and temperature for both of immobilized and soluble enzyme are 8.5 and 5$0^{\circ}C$, respectively. No significant change was demonstrated in the effect of pH and temperature, but the increase in heat stability at high temperature was observed in the case of the immobilized enzyme. It was found that the plug flow reactor could be operated favorably since the pH drop along the column path due to tile reaction product was minimized by employing substrate solution with moderate buffer strength. The optimal condition of reactor operation was discussed with regard to the effect of substrate concentration and the residence time on the conversion efficiency and productivity.

  • PDF

Optimizing Maillard Reaction for Development of Natural Seasoning Source Using Oyster Hydrolysate (굴 가수분해물을 이용한 천연조미소스 개발을 위한 마이얄 반응의 최적화)

  • Ryu, Tae-hyun;Kim, Jin-hee;Shin, Jiyoung;Kim, Hyeon-jeong;Yang, Ji-young
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1269-1274
    • /
    • 2016
  • The oyster is called "milk of sea" which is abundant in taurine, glycogen, cellenium. It could be used in making natural source. Recently, consumers have more interest in natural source because of their diverse preference and its special taste. The goal of this study is to optimize maillard reaction condition for manufacturing natural seasoning using oyster and oyster cooking drip hydrolysate. The result was judged by browning degree and pyrazine, which is flavor components when food heating. Hydrolysate and sugar react according primarily to type of sugar - glucose, xylose and fructose. Xylose was selected as best sugar of browning degree. In the case of sugar contents, all conditions over 1% of sugar contents are almost same. Therefore, the lowest 1% of sugar was selected as appropriate condition. According to the reaction with different temperature, browning degree and pyrazine contents had been increased over $60^{\circ}C$, but the product at $120^{\circ}C$had off-flavored. So, $100^{\circ}C$ is the best condition for the browning reaction. And in accordance with different reaction time, after 6 hours, there was no change in pyrazine and browning reaction. Therefore, to manufacture natural seasoning source, it is optimal to react xylose for maillard reaction at $100^{\circ}C$ for 6 hr with hydrolysate of oyster and oyster cooking drip.

Preparation of Cosmeceuticals Containing Wheat Sprout Extracts: Optimization of Emulsion Stability Using CCD-RSM (밀싹 추출물이 함유된 Cosmeceuticals의 제조: CCD-RSM을 이용한 유화안정성 최적화)

  • Jang, Hyun Sik;Ma, Xixiang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.320-325
    • /
    • 2021
  • In this study, an optimization for the production of water emulsion was designed by adding an extract of wheat sprout, which is known to contain a large amount of antioxidants. The central composite design of reaction surface analysis method (CCD-RSM) was used for the optimization process. The amount of emulsifier, emulsification time, and added amount of wheat sprout extract were selected as independent variables based on our preliminary experiments. The mean droplet size (MDS), viscosity, and emulsion stability index (ESI) were set as the responses to evaluate the stability of the emulsion. For each independent variable, the P-value and coefficient of determination were evaluated to verify the reliability of the experiments. From the result of CCD-RSM, optimum conditions for the emulsification were determined as 23.6 min, 7.7 wt.%, and 3.9 wt.% for the emulsification time, amount of emulsifier, and amount of sprout, respectively. From the optimized condition obtained, MDS, viscosity, and ESI after 7 days from reaction were estimated as 252.3 nm, 616.7 cP, and 88.7%, respectively. The overall satisfaction was 0.9137, which supported the validity of the experiments, and the error rate was measured at 0.5% or less by advancing the experiments. Therefore, an optimized process for producing an emulsion by adding the malt extract was designed by the CCD-RSM.

Optimization of Physical Factor for amylase Production by Arthrobacter sp. by Response Surface Methodology (반응표면분석법을 통한 Arthrobacter sp.의 amylase 생산 최적화)

  • Kim, Hyun-do;Im, Young-kum;Choi, Jong-il;Han, Se Jong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.140-144
    • /
    • 2016
  • In this study, the physical factors for amylase production by Arthrobacter sp. were optimized using response surface methodology(RSM). Antarctic microorganism Arthrobacter sp. PAMC 27388 was obtained from the Polar and Alpine Microbial Collection(PAMC) at the Korea Polar Research Institute. This microorganism was confirmed for the excretion of amylase with Lugol's solution. The amylase activity was after flask culture was as low as 1.66 mU/L before optimization. The physical factors including the inoculum volume, the initial culture pH, and the medium volume were chosen to be optimized for the enhanced amylase production. The calculated results using RSM indicate that the optimal physical factors were 2.49 mL inoculum volume, 6.85 pH and 42.87 mL medium volume with a predicted amylase production of 2.84 mU/L. The experimentally obtained amylase activity was 2.50 mU/L, which was a 150% increase compared to the level before optimization.

유화전이에스테르화에 의한 대두유의 biodiesel화

  • Gang, Yeong-Min;Kim, Hae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.787-790
    • /
    • 2001
  • Emulsified transesterification of soybean oil into biodiesel was investigated using potassium hydroxide and sodium methoxide catalysts with methyl glucoside oleic polyester as a methanol-in-oil emulsifier. The transesterification reaction conditions were optimized to obtain high yields of fatty acid methyl esters of the quality defined by biodiesel standards. The developed process resulted in $95{\sim}96%$ of overall yield from soybean oil by alkali-catalyzed methanolysis at $45^{\circ}C$ of reaction temperature with 6:1 of methanol-to-oil molar ratio and l(v/v)% methyl glucoside oleic polyester in the presense of 0.8wt% KOH and 1.2wt% $NaOCH_3$.

  • PDF