• Title/Summary/Keyword: 반응 조건 최적화

Search Result 744, Processing Time 0.03 seconds

Process Capability Optimization of a LED Die Bonding Using Response Surface Analysis (반응표면분석법을 이용한 LED Die Bonding 공정능력 최적화)

  • Ha, Seok-Jae;Cho, Yong-Kyu;Cho, Myeong-Woo;Lee, Kwang-Cheol;Choi, Won-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4378-4384
    • /
    • 2012
  • In LED chip packaging, die bonding is a very important process which fixes the LED chip on the lead frame to provide enough strength for the next process. This paper focuses on the process optimization of a LED die bonding, which attaches small zener diode chip on PLCC LED package frame, using response surface analysis. Design of experiment (DOE) of 5 factors, 3 levels and 5 responses are considered, and the results are investigated. As the results, optimal conditions those satisfy all response objects can be derived.

Emulsification of O/W Emulsion Using Non-ionic Mixed Surfactant: Optimization Using CCD-RSM (비이온성 혼합계면활성제를 이용한 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화)

  • Lee, Seung Bum;Li, Guangzong;Zuo, Chengliang;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.606-614
    • /
    • 2019
  • A mixing ratio of the oil in water (O/W) emulsion of palm oil and the non-ionic surfactant (Tween-Span type) possessing different hydrophile-lipophilie balance (HLB) values was evaluated in this work. An optimum condition was determined through analysis of main and interaction effects of each quantitative factor using central composite design model-response surface methodology (CCD-RSM). Quantitative factors used by CCD-RSM were an emulsification time, emulsification speed, HLB value and amount of surfactant. On the other hand, the reaction parameters were the viscosity and mean droplet size of O/W emersion. Optimized conditions obtained from CCD-RSM were the emulsification time of 12.7 min, emulsification speed of 5,551 rpm, HLB value of 8.0 and amount of surfactant of 5.7 wt.%. Ideal experimental results under the optimized experimental condition were the viscosity of 1,551 cP and mean droplet size of 432 nm which satisfy the targeted values. The average error value from our actual experiment for verifying the conclusions was below to 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimized palm oil to water emulsification.

Establishment of Extraction Conditions for the Optimization of the Black Garlic Antioxidant Activity Using the Response Surface Methodology (반응표면분석을 이용한 흑마늘의 항산화 활성 최적화를 위한 추출조건 확립)

  • Kang, Jae-Ran;Lee, Soo-Jung;Kwon, Hyo-Jin;Kwon, Min-Hye;Sung, Nak-Ju
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.577-585
    • /
    • 2012
  • This study was conducted to establish the extraction conditions for the optimization of the biological activities of black garlic using the response surface methodology (RSM). The extraction conditions were based on the central composite design, with 15 kinds of variations in the extraction temperature (50-$90^{\circ}C$ ), extraction time (3-15 hrs), and ethanol concentration (0-100%). The total phenol, flavonoids, thiosulfinate contents, and anti-oxidant activity of black garlic extract were significantly higher at the J condition ($90^{\circ}C$ for 9 hrs with a 50% ethanol concentration). In this condition, the biological activities such as DPPH radical scavenging (66.10%), ABTS radical scavenging activity (75.02%), and reducing power by of FRAP (375.4 ${\mu}M/mL$) were excellent. Overall, the extraction conditions for the optimized biological activities of black garlic via RSM were expected to be at $89.68^{\circ}C$ for 9.79 hrs with a 55.72% ethanol concentration. The actual values were 96.4-114.8% of the predicted values.

Optimization for the Diagnostic Testing Strips (진단용 시험지의 최적화)

  • 장원철;박상범;강지나;박정오;오원춘;김종완
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.251-254
    • /
    • 2000
  • 실험실에서 합성된 phenylthiazole ester 와 p-chlorophenylthiazole ester 그리고 methoxyphenylthiazole ester 각각의 기질에 대한 백혈구 에스터라제의 활성화 감도 등을 검토한 후, 반응 특이성이 좋고 감도가 높은 기질을 선택하여, 요 중에 존재하는 백혈구 수를 간접적으로 측정함은 물론, 반응 단계에 따라 구분이 가능한 요 중 백혈구 측정용 시험지를 개발에 필요한 조건을 최적화 하고자 하였다. 또한, 상품화된 기존의 아미노산 에스테르 기질과 비교 검토하여 그 차이가 발견되면 간편하고 경제성을 고려한 에스테르 기질을 개발함은 물론, 발색성 효소 기질의 결점을 보완하기 위하여 그 개선책을 검토하였다. 그 결과 Thiazole 유도체와 아미노산 유도체로부터 만들어진 새로운 에스테르인 phenyl thiazole 아미노산 에스테르인 methoxyphenyl thiazole 아미노산 에스테르 기질이 기존의 상품과 비교했을 때 그 효능이 우수하였다.

CFD Analysis for Optimization of Guide Vane of Axial-Flow Pump (축류펌프 안내 깃 최적화 설계를 위한 전산 유동해석)

  • Yun, Jeong-Eui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.519-525
    • /
    • 2016
  • In a pump, from the performance point of view, it is very important to minimize the shock loss at the inlet of the rotor blades. In this study, the effects of shape and install angle of the inlet guide on the performance of an axial-flow pump are numerically simulated using commercial CFD code, Ansys CFX. Finally, to obtain the optimized shape of the vanes and the install angle of the vanes in the inlet guide under given operating conditions, optimization analysis is conducted using Analysis design exploration based on response surface optimization.

저온 플라즈마 반응기에서의 수정충돌주파수를 이용한 실리콘 나노 입자 형성 모델링

  • Kim, Yeong-Seok;Kim, Dong-Bin;Kim, Hyeong-U;Kim, Tae-Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.217.1-217.1
    • /
    • 2014
  • 반도체 및 디스플레이 산업은 많은 공정들에서 저온 플라즈마 반응을 이용한다. 특히 소자 제작을 위한 실리콘 박막의 증착은 저온 플라즈마 공정의 주요 공정이다. 하지만 실리콘 박막을 합성하는데 있어서 저온 플라즈마에서 형성되는 실리콘 나노 입자는, 오염입자로써 박막의 특성을 악화시켜 소자생산 수율을 악화시키는 주요 원인이 되고 있다. 따라서 플라즈마에서 입자 형성의 원인이 되는 화학반응 및 입자들의 성장 매커니즘에 대한 연구는, 1980년대 플라즈마 공정에서 입자 합성이 보고된 이래 공정의 최적화를 위해 꾸준히 연구되어왔다. 이러한 매커니즘의 연구들은, 플라즈마 화학반응에 의해 실리콘 입자 핵을 만들어 내는 과정과 입자들이 충돌에 의해 성장해가는 과정으로 나눠진다. 플라즈마 화학 반응 과정은 아레니우스 방정식에 의해 정의된 반응계수를 이용하여 플라즈마 내 전자와 이온, 중성 화학종들이 전자 온도와 전자 밀도, 챔버 온도 등에 의해 결정되는 현상을 모사한다. 또한 이 과정에서 실리콘을 포함하는 화학종들의 반응에 의해 핵이 생성 되가는 양상을 모사한다. 생성된 핵은 충돌에 의해 입자가 성장해 가는 과정의 가장 작은 입자로써 이용된다. 입자들이 성장해가는 과정은 입자들이 서로 충돌하면서 다양한 입경의 입자로 분화되어가는 현상을 모사한다. 이 과정에 의해 다양한 입경분포로 분화된 입자들은 플라즈마 내 전자에 의해 하전되며, 이러한 하전 양상은 입경에 따라 다른 분포를 보인다. 본 연구에서는 입자의 하전 분포를 고려하여, 입자들의 성장의 주요 원인인 입자간의 충돌을 대표하는 충돌주파수를 수정하는 방식을 채택하여 보다 정밀한 입자 성장 양상을 모델링하였다. Inductively coupled plasma (ICP) 타입의 저온 플라즈마 반응기에서 합성된 입자들을 Particle Beam Mass Spectrometer (PBMS)와 Scanning Electron Microscope (SEM)를 이용하여 입경분포를 측정한 데이터와 모델링에 의해 계산된 결과를 비교하여 본 모델의 유효성을 검증하였다. 검증을 위해 100~300 mtorr의 챔버 압력 조건과 100~350 W의 입력 전력 조건들을 달리하며 측정한 결과와 계산한 데이터를 조건별로 비교하였다.

  • PDF

SO2 Reduction with CO over SnO2-ZrO2(Sn/Zr=2/1) Catalyst for Direct Sulfur Recovery Process with Coal Gas: Optimization of the Reaction Conditions and Effect of H2O Content (석탄가스를 이용한 직접 황 회수공정을 위한 SnO2-ZrO2(Sn/Zr=2/1) 촉매 상에서의 CO에 의한 SO2 환원 반응: 반응조건 최적화 및 수분의 영향)

  • Han, Gi Bo;Shin, Boo-Young;Lee, Tae Jin
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • In this study, the reactivity of a $SnO_2-ZrO_2$(Sn/Zr = 2/1) catalyst for $SO_2$ reduction by CO was investigated in order to optimize the various reaction conditions such as temperature, gas hourly space velocity (GHSV), and [CO]/[$SO_2$] molar ratio. The reaction temperature in the range of $300{\sim}550^{\circ}C$, space velocity in the range of $5000{\sim}30000cm^3/[g_{-cat}{\cdot}h]$ and [CO]/[$SO_2$] molar ratio in the range of 1.0~4.0 were employed. The optimum temperature, GHSV, and [CO]/[$SO_2$] molar ratio were determined to be $325^{\circ}C$, $10000cm^3/[g_{-cat}{\cdot}h]$, and 2.0, respectively; under these conditions, $SO_2$ conversion was over 99% and sulfur selectivity was over 95%. In addition, the effect of $H_2O$ content on the $SO_2$ reduction by CO was also investigated. As the $H_2O$ content increased from 2 vol% up to 6 vol%, the reactivity and sulfur selectivity decreased. In case of 2 vol% $H_2O$ content, the reaction temperature and [CO]/[$SO_2$] molar ratio were varied in the range of $300{\sim}400^{\circ}C$ and 1.0~3.0. The optimum temperature and [CO]/[$SO_2$] molar ratio were $340^{\circ}C$ and 2.0, respectively under which $SO_2$ conversion and sulfur selectivity were about 90% and 87%, respectively.

Optimization of Extraction Conditions for Ethanol Extracts from Citrus unshiu Peel by Response Surface Methodology (반응표면분석에 의한 진피 에탄올 추출물의 추출조건 최적화)

  • Jeong, Ji-Eun;Shim, Sang-Phil;Jeong, Yoo-Seok;Jung, Hee-Kyoung;Kim, Young-Chan;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.755-763
    • /
    • 2011
  • This study was conducted to monitor the quality characteristics Citrus unshiu ethanolic extracts by a response surface methodology. In extraction conditions based on the central composite design with variations in ethanol concentration (0~100%), extraction temperature($35\sim95^{\circ}C$), and ratio of solvent to sample(20 mL/g). The maximum value of yield was 36.31% at $93.18^{\circ}C$, 67.13% of ethanol concentration. The extraction yield and total polyphenol content were improved with the increase of ethanol concentration than extraction temperature. Total flavonoid content was improved with the increase of extraction temperature than ethanol concentration. The coefficients of determinations($R^2$) were 0.8646(p<0.1) and 0.9153(p<0.05) in electron donating ability and hesperidin content, respectively. Estimated conditions for the maximized extraction including yield, total polyphenol content, total flavonoid content, electron donating ability, and hesperidin content were 55~73% in ethanol concentration, $89\sim95^{\circ}C$ in extraction temperature, and 20 mL/g in ratio of solvent to sample.

Comparison of Sampling and Estimation Methods for Economic Optimization of Cumene Production Process (쿠멘 생산 공정의 경제성 최적화를 위한 샘플링 및 추정법의 비교)

  • Baek, Jong-Bae;Lee, Gibaek
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.564-573
    • /
    • 2014
  • Economic optimization of cumene manufacturing process to produce cumene from benzene and propylene was studied. The chosen objective function was the operational profit per year that subtracted capital cost, utility cost, and reactants cost from product revenue and other benefit. The number of design variables of the optimization are 6. Matlab connected to and controlled Unisim Design to calculate operational profit with the given design variables. As the first step of the optimization, design variable points was sampled and operational profit was calculated by using Unisim Design. By using the sampled data, the estimation model to calculate the operational profit was constructed, and the optimization was performed on the estimation model. This study compared second order polynomial and support vector regression as the estimation method. As the sampling method, central composite design was compared with Hammersley sequence sampling. The optimization results showed that support vector regression and Hammersley sequence sampling were superior than second order polynomial and central composite design, respectively. The optimized operational profit was 17.96 MM$ per year, which was 12% higher than 16.04 MM$ of base case.

Multi-Disciplinary Design Optimization of a Wing using Parametric Modeling (파라미터 모델링을 이용한 항공기 날개의 다분야 설계최적화)

  • Kim, Young-Sang;Lee, Na-Ri;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.229-237
    • /
    • 2008
  • In this research, a MDO(multi-disciplinary design optimization) framework, which integrates aerodynamic and structural analysis to design an aircraft wing, is constructed. Whole optimization process is automated by a parametric-modeling approach. A CFD mesh is generated automatically from parametric modeling of CATIA and Gridgen followed by automatic flow analysis using Fluent. Finite element mesh is generated automatically by parametric method of MSC.Patran PCL. Aerodynamic load is transferred to Finite element model by the volume spline method. RSM(Response Surface Method) is applied for optimization, which helps to achieve global optimum. As the design problem to test the current MDO framework, a wing weight minimization with constraints of lift-drag ratio and deflection of the wing is selected. Aspect ratio, taper ratio and sweepback angle are defined as design variables. The optimization result demonstrates the successful construction of the MDO framework.