• Title/Summary/Keyword: 반응 시스템

Search Result 2,992, Processing Time 0.037 seconds

Inhibitory Effects of a Recombinant Viral Cystatin Protein on Insect Immune and Development (바이러스 유래 시스타틴 재조합 단백질의 곤충 면역 및 발육 억제효과)

  • Kim, Yeongtae;Eom, Seonghyun;Park, Jiyeong;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • Cystatins (CSTs) are reversible and competitive inhibitors of C1A cysteine proteases, corresponding to papain-like cathepsins in plants and animals. A viral CST (CpBV-CST1) was identified from a polydnavirus, Cotesia plutellae bracovirus (CpBV). Our previous study indicated that a transient expression of CpBV-CST1 interfered with immune response and development of Plutella xylostella larvae. To directly demonstrate the protein function, this study produced a recombinant CpBV-CST1 protein (rCpBV-CST1) using bacterial expression system to determine its inhibitory activity against cysteine protease and to assess its physiological alteration in insect immune and development. The open reading frame of CpBV-CST1 encodes a polypeptide of 138 amino acids (${\approx}15kDa$). rCpBV-cystatin protein in BL21 STAR (DE3) competent cells containing a recombinant pGEX4T-3:CpBV-CST1 was over-expressed by 0.5 mM IPTG for 4 h. In biological activity assay, the purified rCpBV-CST1 showed a significant inhibition against papain activity. It inhibited a cellular immune response of hemocyte nodule formation in the beet armyworm, Spodoptera exigua. Moreover, its oral administration retarded larval development of the diamondback moth, Plutella xylostella in a dose-dependent manner. These results suggest that CpBV-CST1 may be applied to control insect pest populations.

Analysis of the Optical Measurement Error Induced by Vibration of the Optical Measurement Tower for Large Mirrors (대구경 반사경 광학측정용 타워의 진동에 의한 광학측정오차 분석)

  • Kang, Pilseong;Kim, Ohgan;Ahn, Hee Kyung;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.281-289
    • /
    • 2017
  • In the present research, the optical measurement error induced by vibration of the optical measurement tower for large mirrors at KRISS (Korea Research Institute of Standards and Science) is investigated. The vibrations of the tower structure, the interferometer, and the null lens are measured while the surface errors of the 600-mm-diameter on-axis aspheric mirror are measuring, under various environmental conditions. The increase of surface error induced by alignment error with respect to vibration is analyzed. As a result, the interferometer and the null lens, which are located on the top of the tower, are highly sensitive to vibration. Additionally, the surface error of the mirror is strongly increased when the vibration directions of the interferometer and the null lens are different. To reduce the alignment error and the surface error induced by vibration, the tower structure should be improved, to be insensitive to low-frequency vibration. Alternatively, optical measuring under stable conditions by vibration monitoring can improve the reliability of the surface error measurement.

Dynamic Behavior Modelling of Augmented Objects with Haptic Interaction (햅틱 상호작용에 의한 증강 객체의 동적 움직임 모델링)

  • Lee, Seonho;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.171-178
    • /
    • 2014
  • This paper presents dynamic modelling of a virtual object in augmented reality environments when external forces are applied to the object in real-time fashion. In order to simulate a natural behavior of the object we employ the theory of Newtonian physics to construct motion equation of the object according to the varying external forces applied to the AR object. In dynamic modelling process, the physical interaction is taken placed between the augmented object and the physical object such as a haptic input device and the external forces are transferred to the object. The intrinsic properties of the augmented object are either rigid or elastically deformable (non-rigid) model. In case of the rigid object, the dynamic motion of the object is simulated when the augmented object is collided with by the haptic stick by considering linear momentum or angular momentum. In the case of the non-rigid object, the physics-based simulation approach is adopted since the elastically deformable models respond in a natural way to the external or internal forces and constraints. Depending on the characteristics of force caused by a user through a haptic interface and model's intrinsic properties, the virtual elastic object in AR is deformed naturally. In the simulation, we exploit standard mass-spring damper differential equation so called Newton's second law of motion to model deformable objects. From the experiments, we can successfully visualize the behavior of a virtual objects in AR based on the theorem of physics when the haptic device interact with the rigid or non-rigid virtual object.

Toxic Effects of Metal Plating Wastewater on Daphnia magna and Euglena agilis (Daphnia magna와 Euglena agilis를 이용한 도금폐수 독성평가)

  • Lee, Junga;Park, Da Kyung
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.2
    • /
    • pp.116-123
    • /
    • 2016
  • The ecotoxicity tests for metal plating wastewater were conducted using Daphnia magna (D. magna) and Euglena agilis (E. agilis). Evaluation for sources of toxicity was performed by 1) Correlation analysis between the concentration of individual metals in the metal plating wastewater and the toxic effects on D. magna, 2) Toxicant identification evaluation methods including graduated pH method, EDTA procedure and sodium thiosulfate procedure, 3) Comparison of toxic effect value ($EC_{50}$ or $LC_{50}$) of individual metal on D. magna and it's concentration in the metal plating wastewater. To evaluate the possibility of E. agilis, a Korean domestic organism, as a test model organism for metal plating waste water, E. agilis toxicity test was also assessed using on-line euglena ecotoxicity system (E-Tox system). Based on toxicant characterization test using D. magna, it was expected that SS, oxidants and heavy metals are responsible for toxicity of metal plating waste water. Especially Cu, Hg, and Ag were the major cationic metals that caused toxicity. E. agilis is less sensitive than D. magna based on the $EC_{50}$ value however it shows prompt response to toxic test substances. E. agilis shows even a significant effect on the cell swimming velocity within 2 min to toxic metal plating wastewater. Our study demonstrates that E. agilis test can be a putative ecotoxicity test for assessing the quality of metal plating waste water.

Connectivity Analysis Between EEG and EMG Signals by the Status of Movement Intention (운동 의도에 따른 뇌파-근전도 신호 간 연결성 분석)

  • Kim, Byeong-Nam;Kim, Yun-Hee;Kim, Laehyun;Kwon, Gyu-Hyun;Jang, Won-Seuk;Yoo, Sun-Kook
    • Science of Emotion and Sensibility
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2016
  • The brain and muscles both of which are composed of top-down structure occur the connectivity with the change of Electroencephalogram(EEG) and Electromyogram(EMG). In this paper, we studied the difference of functional connectivity between brain and muscles that by applying coherence method to EEG and EMG signals when users exercised upper limb with and without the movement intention. The changes in the EEG and EMG signals were inspected using coherence method. During the upper limb exercise, the mu (8~14 Hz) and beta (15~30 Hz) rhythms of the EEG signal at the motor cortex area are activated. And then the beta and piper (30~60 Hz) rhythms of the EMG signal are activated as well. The result of coherence analysis between EEG and EMG showed the coefficient of active exercise including movement intention is significantly higher than passive exercise. The coherence relations between cognitive response and muscle movement could interpret that the connectivity between the brain and muscle appear during active exercise with movement intention. The feature of coherence between brain and muscles by the status of movement intention will be useful in designing the rehabilitation system requiring feedback depending on the users' movement intention status.

Seabed Classification Using the K-L (Karhunen-Lo$\grave{e}$ve) Transform of Chirp Acoustic Profiling Data: An Effective Approach to Geoacoustic Modeling (광역주파수 음향반사자료의 K-L 변환을 이용한 해저면 분류: 지질음향 모델링을 위한 유용한 방법)

  • Chang, Jae-Kyeong;Kim, Han-Joon;Jou, Hyeong-Tae;Suk, Bong-Chool;Park, Gun-Tae;Yoo, Hai-Soo;Yang, Sung-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.158-164
    • /
    • 1998
  • We introduce a statistical scheme to classify seabed from acoustic profiling data acquired using Chirp sonar system. The classification is based on grouping of signal traces by similarity index, which is computed using the K-L (Karhunen-Lo$\grave{e}$ve) transform of the Chirp profiling data. The similarity index represents the degree of coherence of bottom-reflected signals in consecutive traces, hence indicating the acoustic roughness of the seabed. The results of this study show that similarity index is a function of homogeneity, grain size of sediments and bottom hardness. The similarity index ranges from 0 to 1 for various types of seabed material. It increases in accordance with the homogeneity and softness of bottom sediments, whereas it is inversely proportional to the grain size of sediments. As a real data example, we classified the seabed off Cheju Island, Korea based on the similarity index and compared the result with side-scan sonar data and sediment samples. The comparison shows that the classification of seabed by the similarity index is in good agreement with the real sedimentary facies and can delineate acoustic response of the seabed in more detail. Therefore, this study presents an effective method for geoacoustic modeling to classify the seafloor directly from acoustic data.

  • PDF

Lane Change Behavior of Manual Vehicles in Automated Vehicle Platooning Environments (군집주행 환경에서 비자율차의 차로변경행태 분석)

  • LEE, Seol Young;OH, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.4
    • /
    • pp.332-347
    • /
    • 2017
  • Analysis of the interaction between the automated vehicles and manual vehicles is very important in analyzing the performance of automated cooperative driving environments. In particular, the automated vehicle platooning can affect the driving behavior of adjacent manual vehicles. The purpose of this study is to analyze the lane change behavior of the manual vehicles in automated vehicle platonning environment and to conduct the experiment and questionnaire surveys in three stages. In the first stage, a video questionnaire survey was conducted, and responsive behaviors of manual vehicles were investigated. In second stage, the driving simulator experiments were conducted to investigate the lane change behaviors of in automated vehicle platonning environments. To analyze the lane change behavior of the manual vehicles, lane change durations and acceleration noise, which are indicators of traffic flow stability, were used. The driving behavior of manual vehicles were compared across different market penetration rates (MPR) of automated vehicles and human factors. Lastly, NASA-TLX (NASA Task Load Index) was used to evaluate the workload of the manual vehicle drivers. As a result of the analysis, it was identified that manual vehicle drivers had psychological burdens while driving in automated vehicle platonning environments. Lane change durations were longer when the MPR of the automated vehicles increased, and acceleration noise were increased in the case of 30-40 years old or female drivers. The results from this study can be used as a fundamental for more realistic traffic simulations reflecting the interaction between the automated vehicles and manual vehicles. It is also expected to effectively support the establishment of valuable transportation management strategy in automated vehicle environments.

Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter (고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거)

  • Sung, Moon Sung;Chang, Duk;Seo, Seong Cheol;Chung, Bo Rim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF

Integrity evaluation of rock bolt grouting using ultrasonic transmission technique (초음파 투과법을 이용한 록볼트 그라우팅의 건전도 평가)

  • Han, Shin-In;Lee, Jong-Sub;Lee, Yong-Jun;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • As one of the main support systems, rock bolts play a crucial role in the reinforcement of tunnels. Numerical and experimental studies using a transmission method of ultrasonic guided waves are performed to evaluate the integrity of rock bolts encapsulated by grouting paste. Numerical simulations using "DISPERSE" are carried out for the selection of the optimal experimental setup, i.e. non-destructive testing (NDT) system of the rock bolt. Based on results of the numerical simulation, the calculated frequency range for NDT testing is between 20kHz and 70kHz with the first longitudinal L(1) mode. Laboratory transmission tests are performed by attaching the piezo electric sensor at the tip of the rock bolt before embedding. Both of analytical and experimental results show that the amplitude of signals as well as the wave velocity increases with increase in the defect ratio of grouting paste. The defect in grouting paste means that the space around the rock bolt is not fully filled with the grouting paste. Experimental results also show that the increase of the wave velocity is more sensitive to the defect ratio increase than that of the amplitude. This study demonstrates that the transmission technique of ultrasonic guided waves may be a valuable tool in the evaluation of the rock bolt integrity.

  • PDF

Design of waste Sludge/Food Waste Biological Treatment Process using Closed ATAD System (밀폐형 ATAD system을 이용한 하수슬러지/음식물쓰레기 통합처리 공정 설계)

  • Kwon, Hyeok-Young;Ji, Young-Hwan;Song, Han-Jo;Kim, Seong-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.4
    • /
    • pp.129-137
    • /
    • 2000
  • In this study, biological treatment process of MWWT(Municipal wet-waste Treatment) has been developed through a moduling of the containerized closed ATAD(Auto thermal aerobic digestion) system & closed vertical dynamic acerator, which were used for food waste and cattle manure, respectively. Though biological process has several advantages such as low concentrations of heavy metals and salts, proper and stable C/N ratio and constant reaction rate against the process treating two wastes separately, it has a obstacles of salt concentration and much usage of bulking agent such as wood chip. After rapid oxidation in the boxed tower reactor for 5 days, the content of sewage sludge would be reduced 65% on around, might be mixed with the food waste that had been treated in the static closed reactor during 6 days and put in the secondary static reactor for curing. During composting process, the odor contained in the gas generated from the reactor was removed by passing it through a biofilter as well as the leachate was treated in the wastewater treatment facility. Consequently, it seemed to be possible to compost sewage sludge at mild and stable operating condition and at low cost through the biological ATAD process resulting in the production of organic compost satisfying the specifications regulated by itself.

  • PDF