• Title/Summary/Keyword: 반응유동

Search Result 935, Processing Time 0.03 seconds

A Study on the Hydriding and Dehydriding Kinetics of a Mechanically-Alloyed Mg-25wt.%Ni Mixture (기계적 합금처리된 Mg-25wt.%Ni 혼합물의 수소화물 형성 및 분해에 대한 반응속도론적 연구)

  • Song, Myoung Youp
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 1999
  • The hydriding and dehydriding kinetics were studied for a Mg-25wt.%Ni mixture which has the most excellent hydrogen-storage characteristics among many mechanically-alloyed mixtures. The hydriding and dehydriding rates were measured and the rate-controlling steps were determined by comparing the hydriding and dehydriding rates with the theoretical rate equations. The rate-controlling step in the hydriding reaction is the Knudsen flow and the ordinary gaseous diffusion of hydrogen molecules through interparticle channels, cracks, etc. in the various ranges of weight percentage of absorbed hydrogen $H_a$ below $H_a$=4.0. In the $H_a$ range 4.0 < $H_a{\leq}4.25$, the diffusion of hydrogen atoms through the growing hydride layer is considered the rate-controlling step. The rate-controlling step in the dehydriding reaction is the Knudsen flow and the ordinary gaseous diffusion of hydrogen molecules for all the ranges of weight percentage of desorbed hydrogen $H_d$.

  • PDF

An Experimental Study on the Treatment of Organic Wastewater by Soil Microbes Using Three-phase Fluidized Bed (삼상유동층 반응기에서 토양미생물에 의한 유기성 폐수처리에 관한 연구)

  • Choung, Youn Kyoo;Chun, Yang Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.207-217
    • /
    • 1992
  • In this study, isolated and cultured nitrogen fixed microbes were seeded in the three-phase fluidized bed in which gas, solid and liquid were contacted directly. Input velocity was varied from 8.12 cm/hr to 16.32 cm/hr. And upflow gas pressure was fixed to 80 psi. Return ratios were from 0.2 to 0.6 with the each experimental condition. According to these condition, movement of media, growth of biofilm and removal efficiency were measured. As the results, in case of briquette ash, biofilm was developed to $170{\mu}m$ when velocity was 8.12 cm/hr and return ratio was 0.6. In this condition, COD removal efficiency was 97% and $NH_4$-N removal efficiency was 83%. At the same condition, biofilm thickness of glass bead was $17.59{\mu}m$ and its COD and $NH_4$-N removal efficiency was 83% and 72%. Nitrogen fixed microbes have following characters: it formed dark-brownish sludge, excellent adhesive force, easy solid-liquid separation and low oxygen uptake ratio, but sensitive to DO concentration. Not only it endured shock loading, but required short time to steady state.

  • PDF

The Physical Fluidity Properties of Cement Containing Melamine-type Superplasticizer Obtained with Various Synthetic Conditions (다양한 합성조건에서 얻어진 멜라민계 고유동화제가 함유된 시멘트의 물리적 유동특성)

  • Yoon, Sung-Won;Lee, Bum-Jae
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.815-821
    • /
    • 2005
  • Three major commercially available organic chemical admixtures are modified lignosulfonates (LS), sulfonated naphthalene-formaldehyde resins (SNF) and sulfonated melamine-formaldehyde (SMF). In this study, various sulfonated melamine-formaldehyde (SMF) superplasticizers were synthesized via four synthetic steps including hydroxymethylation (Step 1), sulfonation (Step 2), polymerization (Step 3) and neutralization and stabilization (Step 4). In this synthesis, mole ratio of melamine to formaline and the amount of acid catalyst used were varied. The obtained SMF superplasticizers were applied to cement paste and mortar and their physical properties including workability, slump loss, compressive strength were investigated. Also their hydrate shapes were investigated by examining SEM images of the cured paste. It was found that the fluidity properties of cement were significantly influenced by the structure of SMF condensates.

Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study (마이크로채널 반응기를 이용한 강화된 저온 피셔-트롭쉬 합성반응의 전산유체역학적 해석)

  • Kshetrimatum, Krishnadash S.;Na, Jonggeol;Park, Seongho;Jung, Ikhwan;Lee, Yongkyu;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.4
    • /
    • pp.92-102
    • /
    • 2017
  • Fischer-Tropsch synthesis reaction converts syngas (mixture of CO and H2) to valuable hydrocarbon products. Simulation of low temperature Fischer -Tropsch Synthesis reaction and heat transfer at intensified process condition using catalyst filled single and multichannel microchannel reactor is considered. Single channel model simulation indicated potential for process intensification (higher GHSV of $30000hr^{-1}$ in presence of theoretical Cobalt based super-active catalyst) while still achieving CO conversion greater than ~65% and $C_{5+}$ selectivity greater than ~74%. Conjugate heat transfer simulation with multichannel reactor block models considering three different combinations of reactor configuration and coolant type predicted ${\Delta}T_{max}$ equal to 23 K for cross-flow configuration with wall boiling coolant, 15 K for co-current flow configuration with subcooled coolant, and 13 K for co-current flow configuration with wall boiling coolant. In the range of temperature maintained (498 - 521 K), chain growth probability calculated is desirable for low-temperature Fisher-Tropsch Synthesis.

Effects of Regeneration Conditions on Sorption Capacity of CO2 Dry Potassium Sorbent During Carbonation (재생반응 조건이 CO2 건식 K-계열 흡수제의 흡수능력에 미치는 영향)

  • Kim, Yunseop;Park, Young Cheol;Jo, Sung-Ho;Ryu, Ho-Jung;Rhee, Young Woo;Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.333-338
    • /
    • 2015
  • In this study, we investigated carbonation-regeneration and agglomeration characteristics of dry sorbents. Experiment has been proceeded in the batch-type reactor, which is made of quartz: 0.05 m of I.D and 0.8 m in height. The sorbents that is collected at the cyclone of the carbonation reactor of continuous process were used in this study. The reactivity was studied at the various concentrations of water vapor, $N_2$ and $CO_2$ in the fluidizing gas at regeneration reaction. As a result, the reactivity increased as the regeneration temperature increased, the reactivity decreased as the concentration of water vapor increased. The absorption capacity showed the highest value in case of using $N_2$ 100% as regeneration gas. And decreased in order of $H_2O+N_2$, $CO_2$ 100% and $H_2O+CO_2$. The agglomeration characteristics were investigated according to the particle sizes and concentrations of water vapor at carbonation reaction. As a result, the particle with smaller size and higher concentration of water vapor showed the higher agglomeration characteristic.

Preparation of Silicon Tetrachloride by Chlorination of Silicon (실리콘의 염소화반응에 의한 사염화규소 제조)

  • Park, Kyun Young;Lee, Mi Sun;Kim, Min Cheol;Lee, Chan Hee;Park, Hoey Kyung;Kang, Tae Won;Jeong, Hae Seong;Han, Kyoung Ah;Huh, Weon Hoe;You, Ji Cheol
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.407-410
    • /
    • 2013
  • The chlorination of a metallurgical-grade silicon was carried out in a fluidized bed reactor, 25 mm in diameter. The flow rate of the chlorine admitted into the reactor was 0.2 L/min and that of the carrier nitrogen was 0.8~1.0 L/min. The reactor temperature was maintained at $450^{\circ}C$ and the temperature of the coolant at the $SiCl_4$ condenser was at $-5^{\circ}C$. The $SiCl_4$ yield increased with increasing the mole fraction of chlorine in the feed gas, exhibiting 28% at the mole fraction of 0.2. Further increase of the chlorine mole fraction was not attempted in a worry that the reactor might be failed due to the high exothermicity of the reaction. The production of $SiCl_4$ from silicon by fluidized bed chlorination was demonstrated on a laboratory scale, which is a stepping stone for future studies under more severe conditions toward industrial application.

Characteristics of Hydrodynamics, Heat and Mass Transfer in Three-Phase Inverse Fluidized Beds (삼상 역 유동층의 수력학, 열전달 및 물질전달 특성)

  • Kang, Yong;Lee, Kyung Il;Shin, Ik Sang;Son, Sung Mo;Kim, Sang Done;Jung, Heon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.451-464
    • /
    • 2008
  • Three-phase inverse fluidized bed has been widely adopted with its increasing demand in the fields of bioreactor, fermentation process, wastewater treatment process, absorption and adsorption processes, where the fluidized or suspended particles are small or lower density comparing with that of continuous liquid phase, since the particles are frequently substrate, contacting medium or catalyst carrier. However, there has been little attention on the three-phase inverse fluidized beds even on the hydrodynamics. Needless to say, the information on the hydrodynamics and transport phenomena such as heat and mass transfer in the inverse fluidized beds has been essential for the operation, design and scale-up of various reactors and processes which are employing the three-phase inverse beds. In the present article, thus, the information on the three-phase inverse fluidized beds has been summarized and reorganized to suggest a pre-requisite knowledge for the field work in a sense of engineering point of view. The article is composed of three parts; hydrodynamics, heat and mass transfer characteristics of three-phase inverse fluidized beds. Effects of operating variables on the phase holdup, bubble properties and particle fluctuating frequency and dispersion were discussed in the section of hydrodynamics; effects of operating variables on the heat transfer coefficient and on the heat transfer model were discussed in the section of heat transfer characteristics ; and in the section of mass transfer characteristics, effects of operating variables on the liquid axial dispersion and volumetric liquid phase mass transfer coefficient were examined. In each section, correlations to predict the hydrodynamic characteristics such as minimum fluidization velocity, phase holdup, bubble properties and particle fluctuating frequency and dispersion and heat and mass transfer coefficients were suggested. And finally suggestions have been made for the future study for the application of three-phase inverse fluidized bed in several available fields to meet the increasing demands of this system.

LES for Turbulent Channel Flow with Blowing Velocity (분류유동이 있는 채널 난류유동의 LES 해석)

  • Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.699-705
    • /
    • 2007
  • Recent experimental data shows that the noticeable feature of irregular roughened spots on the fuel surface occurs during the combustion test with PMMA/GOX in the hybrid rocket motor. The generation of these unexpected patterns is likely to be resulted from the disturbed boundary layer due caused by wall blowing which is intented to simulate the process of fuel vaporization. LES technique was implemented to investigate both the flow characteristics near fuel surface and the subsequent evolution of turbulence modified by the wall blowing. Simple channel geometry instead of circular grain configuration was used for the investigation without chemical reactions in order to allow for a focused examination on the near-wall behavior at the Reynolds number of 22,500. It was shown that the wall blowing pushed turbulent structures upwards making them tilted and this skewed displacement, in effect, left the foot prints of the structures on the surface. This change of kinematics may explain the formation of irregular isolated spots on the fuel surface observed in the experiment.

Chemical Reacting Flow Analysis of the 30 tonf - class KARl LRE Nozzle (KARI 30톤급 액체로켓엔진 노즐 유동 화학 반응 해석)

  • Lee, Dae-Sung;Kang, Ki-Ha;Cho, Duck-Rae;Choi, J.Y.;Choi, H.S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.105-109
    • /
    • 2007
  • Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were used to rocket nozzle flow, those were coupled with the methods of computational fluid dynamics code. For a design of high temperature rocket nozzle, chemical equilibrium analysis which shares the same numerical characteristics with frozen flow analysis can be an efficient design tool for predicting maximum thermodynamic performance of the nozzle. In this study, shifting-equilibrium flow analysis was carried out for the 30 $ton_f$-class KARl liquid rocket engine nozzle together with frozen flow. The performance evaluation based on the 30 $ton_f$-class KARl LRE nozzle flow analyses will provide an understanding of the thermochemical process in the nozzle and performances of nozzle.

  • PDF

Evaluation of Setting Delay in Mortar Adding Superplasticizer Using Electrical Resistivity Measurement (전기비저항 측정법을 이용한 유동화 모르타르의 응결 지연 현상 평가)

  • Lee, Hanju;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.9-15
    • /
    • 2018
  • According to the development and use of self-consolidating concrete in field, interest in material properties of early-age concrete is rising. Setting time with hydration process of cement is one of significant indicator to evaluate the early-age material properties of concrete, various nondestructive methods including penetration resistance measurement have been proposed to estimate setting time. This study performed an experimental approach to evaluate setting time delay in mortar adding superplasticizer using electrical resistivity measurement. For this purpose, total nine types of mortar samples were prepared, and its electrical resistivity was monitoring during 24h after mixing. From the experimental result, rising time of electrical resistivity was used to evaluate setting delay of mortar, and penetration resistance was also measured for comparison. In addition, dynamic elastic modulus and compressive strength of 1day mortar were measured to investigate a possibility the use of electrical resistivity measurement for evaluation of early-age material properties.