• Title/Summary/Keyword: 반응영역

Search Result 1,801, Processing Time 0.03 seconds

A study on the autonomic nervous system reaction by three arousal modes (3단계 각성 모드에 따른 자율신경계 반응 변화에 대한 연구)

  • Kim, Chi-Jung;Hwang, Min-Cheol;Kim, Jong-Hwa;U, Jin-Cheol;Kim, Yong-U;Kim, Ji-Hye
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.05a
    • /
    • pp.153-156
    • /
    • 2009
  • 본 연구는 3 단계 각성 모드에 따른 자율신경계 반응 모델 구현에 대한 연구이다. 정신생리학(Psycho-Physiology)에서의 각성 시스템 모델은 Boucein(1992, 2006)에 의해 제안되었다. 각성 시스템 1 은 편도체(amygdala)활동과 관계한, 무의식수준에서 주의를 집중시키는 역할을 한다. 각성 시스템 2 는 해마(hippocampus)활동과 관계한, 인지적 각성 단계로서 상황-반응(situation-reaction) 대한 연결을 담당하는 역할을 한다. 각성 시스템 3 은 기저핵(basal ganglia)활동과 관계한, 몸운동(somatomotor)활동과 관계된 뇌 영역의 준비를 활성화시킨다. 각성 시스템은 상황의 변화나 특정 자극이 일어나면, 그에 해당하는 각성 모드에 의해 자율신경계(automatic nervous system)반응이 발생한다. 따라서, 자율신경계반응의 분석을 통하여 각성 시스템의 단계를 평가할 수 있다. 본 연구는 자율신경계반응 중 GSR(galvanic skin Response)과 SKT(skin temperature)분석을 통하여 3단계 각성 모드인 직관적, 인지적, 행동적 모드를 평가하는 연구이다.

  • PDF

Decomposition Characteristics of Cyano-compounds in Non-thermal Packed-Bed-Plasma-Reactor (충전형 저온 플라즈마 반응기에서 시안 화합물의 분해 특성)

  • Ryu, Sam-Gon;Park, Myung-Kyu;Lee, Hae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.343-347
    • /
    • 2012
  • The decomposition behaviors of gaseous cyanides in non-thermal plasma-catalyst hybrid reactor have been investigated with the variation of discharge power, influent concentration of cyanide, humidity of air carrier and packed materials in the reactor. Destruction of cyanides by plasma only process was very difficult compared to that of trichloroethylene. But the destruction efficiencies of cyanides were dramatically improved through packing alumina or Pt/alumina bead in the plasma discharge region. From the results, it could be assumed that thermal catalytic effect is involved simultaneously with plasma in the reaction of cyanides destruction on the alumina or Pt/alumina packed plasma reactor.

Corrosion and Passivation of Nickel Rotating Disk Electrode in Borate Buffer Solution (Borate 완충용액에서 니켈 회전원판전극의 부식과 부동화)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.533-539
    • /
    • 2013
  • The electrochemical corrosion and passivation of Ni rotating disk electrod in borate buffer solution was studied with potentiodynamic and electrochemical impedance spectroscopy. The mechanisms of both the active dissolution and passivation of nickel and the hydrogen evolution in reduction reaction were hypothetically established while utilizing the Tafel slope, impedance data, the rotation speed of Ni-RDE and the pH dependence of corrosion potential and current. Based on the EIS data, an equivalent circuit was suggested. In addition, carefully measured were the electrochemical parameters for specific anodic dissolution regions. It can be concluded from the data collected that the $Ni(OH)_2$ oxide film, which is primarily formed by passivation, is converted to NiO by dehydration under the influence of an electrical field.

Numerical Study on Normal Propagation Bimetallic Reaction Wave in Al/Ni Nano-Multilayers (알루미늄/니켈 나노박막다층 내 수직방향 이종금속 반응파 전파 해석연구)

  • Kim, Kyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.20-27
    • /
    • 2022
  • Present modeling study of nanoenergetics focuses on the numerical simulation of reaction wave propagation in normal direction across nanoscale multilayers of aluminum and nickel combination. The governing equations for atomic and thermal diffusion are employed in one-dimensional semi-infinitely alternating Al/Ni multilayered structures and the numerical results show the established patterns of quasi-steady intermetallic reaction waves. Also, the reaction wave speed is confirmed to be highly independent of reaction wave directions in such nanoenergetic structures.

Multivariate Region Growing Method with Image Segments (영상분할단위 기반의 다변량 영역확장기법)

  • 이종열
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.273-278
    • /
    • 2004
  • Feature identification is one of the largest issue in high spatial resolution satellite imagery. A popular method associated with this feature identification is image segmentation to produce image segments that are more likely to features interested. Here, it is, proposed that combination of edge extraction and region growing methods for image segments were used to improve the result of image segmentation. At the intial step, an image was segmented by edge detection method. The segments were assigned IDs, and polygon topology of segments were built. Based on the topology, the segments were tested their similarities with adjacent segments using multivariate analysis. The segments that have similar spectral characteristics were merged into a region. The test application shows that the segments composed of individual large, spectrally homogeneous structures, such as buildings and roads, were merged into more similar shape of structures.

  • PDF

Nitrogen Removal in Fluidized Bed and Hybrid Reactor using Porous Media (다공성 담체를 이용한 유동상 및 하이브리드 반응기에서의 질소제거)

  • Jun, Byong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.542-548
    • /
    • 2005
  • A fluidized bed reactor containing porous media has been known to be effective for nitrogen and organic matters removal in wastewater. The porous media which attached microbes plays important roles in simultaneous nitrification/denitrification (SND) due to coexistence of oxic, anaerobic and anoxic zone. For SND reaction, oxygen and organic substrates should be effectively diffused from wastewater into the intra-carrier zone. However, the overgrowth heterotrophic microbes at the surface of porous media may restrict from substrates diffusion. From these viewpoints, the existence and effect of heterotrophic bacteria at surface of porous media might be the key point for nitrogen removal. A porous media-membrane hybrid process was found to have improved nitrogen removal efficiency, due to stimulated denitrification as well as nitrification. Microelectrode studies revealed that although intra-media denitrification rate in a conventional fluidized bed was limited by organic carbon, this limitation was reduced in the hybrid process, resulting in the increased denitrification rate from 0.5 to $4.2\; mgNO_3-N/L/hr$.

Growth of Metal Nano-Particles on Polarity Patterned Ferroelectrics by Photochemical Reaction (광화학적 반응을 이용한 편극 패턴된 강유전체 표면에 금속 나노입자의 증착에 관한 연구)

  • Park, Young-Sik;Kim, Jung-Hoon;Yang, Woo-Chul
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.300-306
    • /
    • 2011
  • We report the surface distribution of metal (Ag, Au) nanoparticles grown on polarity-patterned ferroelectric substrates by photochemical reaction. Single crystal periodically polarity-patterned $LiNbO_3$(PPLN) was used as a ferroelectric substrate. The nanoparticles were grown by ultra-violet (UV) light exposure of the PPLN in the aqueous solutions including metas. The surface distribution of the grown nanoparticles were measured by atomic force microscopy and identification of the orientation of the polarity of the ferroelectric surface was performed by piezoelectric force microscopy. The Ag- and Au-nanoparticles grown on +z polarity regions are larger and denser than that on -z polarity regions. In particlur, the largest and denser Ag-nanoparticles were grwon on the polarity boundary regions of the PPLN while Au-nanoparticles were not specifically grown on the boundary regions. Thus, we found that the size and position of metal nanoparticles grown on ferroelectric surfaces can be controlled by UV-exposure time and polarity pattern structures. Also, we discuss the difference of the surface distribution of the metal nano-particles depending on the polarity of the ferroelectric surfaces in terms of surface band structures, reduced work fucntion, and inhomogeneous electric field distribution.

A Study on the Effect of Coal Properties on the Electrochemical Reactions in the Direct Carbon Fuel Cell System (석탄 물성에 따른 직접탄소 연료전지의 전기화학 반응 특성 연구)

  • Ahn, Seong-Yool;Eom, Seong-Yong;Rhie, Young-Hoon;Moon, Cheor-Eon;Sung, Yon-Mo;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.1033-1041
    • /
    • 2012
  • Performance evaluation of a direct carbon fuel cell (DCFC) was conducted according to coals and a graphite particle. Several fuel properties such as thermal reactivity, textural structure, gas adsorption characteristic, and functional groups on the surface of fuels were investigated and their effects on electrochemistry were discussed. The strong carbon structure inside of fuels led the rapid potential decreasing in high current density region, because it caused small surface area and low pore volume. The functional groups on the surface were related to the low current density region. The maximum current density and power density of fuels were affected by the total carbon content in fuels. The effect of operating conditions such as stirring rate and operating temperature was investigated in this study.

Fabrication of Inorganic Filler-Polyurethane Composite Foam and Postcure Effect on Mechanical Properties (무기분말-폴리우레탄 복합체폼의 제조 및 후처리가 기계적 물성에 미치는 영향)

  • Ahn, Won-Sool;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2451-2456
    • /
    • 2011
  • Inorganic micropowder(Ce500)-filled polyurethane composite foams were fabricated and the effects of postcure on the mechanical properties were studied by the measurement of polymerization temperature, TGA, and UTM test. Temperature for the maximum reaction rate of 20wt% Ce500-filled sample reached upto ca. $100^{\circ}$ within 10min. and, for the same sample, double mode thermal decomposition was observed around two distinguished temperatures of $250^{\circ}$ and $350^{\circ}C$. The activation energies for the decomposition were calculated using Kissinger method as 117.4 and 139.4 kJ/mol, respectively. While break strength and hardness of the sample seemed nearly affected by postcure time at $160^{\circ}C$, elongation, however, was significantly changed upto 1.72 times after 7hrs treatment. As the results, the condition of 7hrs at $160^{\circ}$ was considered as the optimum postcure condition for the Ce500-filled PU composite foam samples.

A Study of Adsorption Behaviour of Humic Acid and Americium on the Kaolinite (카올리나이트에 대한 휴믹산 및 아메리슘 흡착거동 연구)

  • Lee, Myung-Ho;Lee, Kyu-Whan;Park, Kyung-Kyun;Jung, Euo-Chang;Song, Kyu-Seok;Shin, Hyun-Sang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.2
    • /
    • pp.107-113
    • /
    • 2010
  • In this study, the adsorption reactions in the binary component system such as kaolinite-humic acid, kaolinite-americium and humic acid-americium were investigated. After performing the basic physico-chemical properties of the kaolinite, the adsorption reactions of the humic acid on the kaolinite were carried out with varying concentration of humic acid and ion strength, and pH. With increasing HA concentration and pH, the sorption of HA onto KA decreased, while the sorption of HA onto KA increased with increasing ionic stre ngth. Also, with varying pH, the adsorption reactions of the americium-kaolinite and americium-humic acid were studied. In the acid and neutral region, Am easily adsorbed on the HA, while the sorption of Am on the HA in the alkali region decreased because of electrostatic repulsion. The results from these studies make it possible to understand the characteristics of adsorption behaviour of the americium by the humic acid in the water environment.