• Title/Summary/Keyword: 반응성분말 콘크리트

Search Result 16, Processing Time 0.022 seconds

Chemical Properties of Light-weight Foamed Concrete Using WCP in Hydrothermal Reaction Condition (수열반응 조건에서 폐콘크리트 미분말을 사용한 경량기포콘크리트의 화학적 특성)

  • Park, Hyo-Jin;Lee, Kyung-Hyun;Kang, Cheol;Jeong, Ji-Yong;Lee, Dae-Geun;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.375-376
    • /
    • 2010
  • This study is shown the chemical characteristics by SEM and XRD for the Light-weight Foamed Concrete according to replacement ratio of WCP and the autoclave curing time. From the SEM of the Light-weight Foamed Concrete after hydrothermal raction, regardless of replacement ratio of WCP and the autoclave curing time, forms the crystal hydrates having various shapes such as board and fiber etc is generated. From the XRD, it seems that the tobermorite hydrate is originated from crystalized quartz.

  • PDF

The Strength Characteristics of Cement ZERO Mortar Mixing Waste Glass Powder and Fly Ash as Binder (플라이애시와 폐유리 미분말을 혼합한 시멘트 ZERO 모르타르의 강도특성)

  • Kang, Hyun-Jin;Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Park, Jung-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.649-652
    • /
    • 2008
  • Glass is often recycled. In order to recycle, glass is crushed and ground. During this process, glass powder is generated. Most of this scrap glass powder is disposed in landfills. The glass powder, consisting of 73% SiO$_2$ and 16% Al$_2$O$_3$, is richer in components necessary for polymerization than fly ash. In this study, the fluidity and compressive strength of cement zero mortar were investigated, where cement zero mortar was prepared by mixing 5$\sim$15% of glass powder with 100% fly ash mortar. Result of flow test concluded that workability was not affected by adding the powder. After aging for 28 days, the compressive strength increased by approximately 6% with 5% addition of scrap glass powder. With 10% addition, the strength remained the same. In case of 15% addition, the compressive strength decreased by approximately 6%. To summarize the results, 5$\sim$10% addition of scrap glass powder is considered to be most appropriate.

  • PDF

Evaluation of Environment Friendly High Performance Ternary Cement Concrete Deck Overlay Pavement by Experimental Construction (시험시공을 통한 친환경 고성능 3성분계 시멘트 콘크리트 교면 포장의 성능 평가)

  • Choi, In-Hyeok;Kim, Dae-Seong;Lee, Jun-Ho
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.85-93
    • /
    • 2011
  • This study experimented to evaluate the environment friendly high performance ternary cement concrete deck overlay pavement using mineral admixture such as fly ash and ground granulated blast-furnace slag. It was measured to find best binder mixing according to replacement rate of mineral admixture with compressive strength and flexural strength. After finding best binder, it is also experimented to evaluate durability on chloride penetration resistance, freezing- thawing resistance, scaling resistance of deicing chemicals, abrasion resistance, alkali-silica reactivity test and bonded environment friendly high performance ternary cement concrete deck overlay pavement experimented to evaluate bonded old deck and new concrete overlay pavement using special polymer cement mortar. In additions, bonded environment friendly high performance ternary cement concrete deck overlay pavement by experimental construction was evaluated at interchange bridge of North Yeoju. Result, examination was indicated better binding with binder replacement of cement 70%, ground granulated blast-furnace slag 15% and fly ash 15%. And special polymer cement mortar used in old deck and new overlay concrete was indicated better bonding both laboratory and construction.

The Solidification of $CO_2$ by Using Waste Cement and Inorganic Waste By-Products (폐(廢)콘크리트 미분말(微粉末)과 무기성(無機性) 폐부산물(廢副産物)을 이용(利用)한 $CO_2$ 고형화(固形化))

  • Ahn, Ji-Whan;Yoo, Kwang-Suk
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.3-10
    • /
    • 2009
  • This paper will introduce the study which is the solidification and reduction of $CO_2$ green house gas, by using inorganic industrial wastes such like waste cement, steel making slag, incineration ash and so on. These inorganic wastes contain a large quantity of CaO content in common, which is easily reacted with CaO resulting in formation of $CaCO_3$. It will be suggested in this study that the necessary of the reduction and solidification of $CO_2$ gas with using industrial inorganic wastes is for building the Korea carbon storage model in this study.

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

An Experimental Study on the Strength Properties of Reactive Powder Concrete Using copper slag aggregate (동제련 슬래그를 골재로 사용한 반응성 분말 콘크리트(RPC)의 강도 특성에 관한 실험적 연구)

  • Park, Min-Su;Lee, Seung-Hoon;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.278-279
    • /
    • 2014
  • This study was performed an evaluation of mechanical properties of reactive powder concrete using copper slag. So, various RPC containing copper slag were made by replacement ratio of copper slag and different the curing condition and their mechanical properties were investigated. From the experimental results, slump flow using copper slag tends to increase with replacement ratio. And also, 30% of copper slag with quartz sand was found to have a compressive strength superior to that of plain.

  • PDF

Mechanical Properties and Durability of Concrete Incorporating Air-Cooled Slag (서냉슬래그 미분말을 적용한 콘크리트의 역학적 성능 및 내구성 평가)

  • Lee, Seung-Tae;Park, Kwang-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.356-363
    • /
    • 2017
  • Blast furnace slag(BFS) is a by-product generated during the manufacture of pig ion, and is divided into water-cooled slag(WS) and air-cooled slag(AS) by the coking method of BFS. In this study, concrete specimens with ternary binders were produced at the various replacement levels of cement by AS. Various mechanical properties of concrete, such as compressive and split tensile strengths, absorption and water permeable pore, were measured. In addition, the chloride ions penetration resistance and carbonation resistance were tested to evaluate the durability of concrete incorporating AS. The experimental data indicated that the use of AS up to a maximum of 10% replacement level enhanced the concrete performance. However, a higher replacement of AS exhibited poor mechanical properties and concrete durability.

A Study on Mechanical Properties of Reactive Powder Concrete Using copper slag (동제련 슬래그를 활용한 R.P.C.(Reactive Powder Concerete)의 역학적 특성에 관한 연구)

  • Lee, Yong-Moo;Shin, Sang-Yeop;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.74-75
    • /
    • 2013
  • The paper study on the mechanical properties of reactive powder concrete using copper slag. A change in the replacement ratio s of copper slag was measured compressive strength and slump flow. As a results, slump flow using copper slag tend to increase slump flow with replacement ratio. As the concrete with a replacement ratio of copper slag up to 30% was found to have a compressive strength superior to that of plain.

  • PDF

An Experimental Study on the Chloride Attack Resistibility of Alkali-Activated Ternary Blended Cement Concrete (알칼리 활성화 3성분계 혼합시멘트의 염해 저항성에 관한 실험적 연구)

  • Yang, Wan-Hee;Hwang, Ji-Soon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.321-329
    • /
    • 2016
  • The use of ternary blended cement consisting of Portland cement, granulated blast-furnace slag (GGBFS) and fly ash has been on the rise to improve marine concrete structure's resistance to chloride attack. Therefore, this study attempted to investigate changes in chloride attack resistibility of concrete through NT Build 492-based chloride migration experiments and test of concrete's ability to resist chloride ion penetration under ASTM C 1202(KS F 2271) when 1.5-2.0% of alkali-sulfate activator (modified alkali sulfate type) was added to the ternary blended cement mixtures (40% ordinary Portland cement + 40% GGBFS + 20% fly ash). Then, the results found the followings: Even though the slump for the plain concrete slightly declined depending on the use of the alkali-sulfate activator, compressive strength from day 2 to day 7 improved by 17-42%. In addition, the coefficient from non-steady-state migration experiments for the plain concrete measured at day 28 decreased by 36-56% depending on the use of alkali-sulfate. Furthermore, total charge passed according to the test for electrical indication of concrete's ability to resist chloride ion penetration decreased by 33-62% at day 7 and by 31-48% at day 28. As confirmed in previous studies, reactivity in the GGBFS and fly ash improved because of alkali activation. As a result, concrete strength increased due to reduced total porosity.

An Experimental Study on the Engineering Characteristics of Ternary Lightweight aggregate Mortar Using Recycling Water (회수수를 사용한 3성분계 경량 골재 모르타르의 공학적 특성에 관한 실험적 연구)

  • Lee, Jae-In;Bae, Sung-Ho;Kim, Ji-Hwan;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.48-55
    • /
    • 2022
  • This study uses the recovered water as mixing water and artificial lightweight aggregate pre-wetting water as part of a study to increase the recycling rate and reduce greenhouse gas of the ready-mixed concrete recovered during the concrete transport process, and cement fine powder of blast furnace slag(BFS) and fly ash(FA). The engineering characteristics of the three-component lightweight aggregate mortar used as a substitute were reviewed. For this purpose, the flow, dry unit mass, compressive strength, drying shrinkage, neutralization depth, and chloride ion penetration resistance of the three-component lightweight aggregate mortar were measured. When used together with the formulation, when 15 % of BFS and 5 % of FA were used, it was found to be positive in improving the compressive strength and durability of the mortar.