• Title/Summary/Keyword: 반응도

Search Result 40,234, Processing Time 0.059 seconds

Kinetics in Phase Transfer Catalysis with Heterogeneous Liquid-Liquid System (액-액 불균일계에서 상이동촉매의 반응속도론 해석)

  • Park, Sang-Wook;Moon, Jin-Bok;Hwang, Kyong-Son
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.230-237
    • /
    • 1994
  • The reaction conversions of n-butyl acetate in the alkaline hydrolysis of n-butyl acetate by Aliquat 336 were measured in a flat agitator and a dispersion agitator. These measured data was used to analyze the complicated reaction mechanism of the liquid-liquid heterogeneous reaction by a phase transfer catalyst with a pseudo-first order reaction model, a interfacial reaction model and a bulk-body reaction model. The pseudo-firsts order reaction model and the interfacial reaction model could be explained by the experimental data from the dispersion agitator and the bulk-boby reaction model could be explained by those from the flat agitator and the reaction rate constants were $3.1{\times}10^{-4}$, $7.3{\times}10^{-4}$, $6.6m^3/kmol.s$ from these models at $25^{\circ}C$, respectively.

  • PDF

Synthesis of Resol Type Phenol Resins and Their Reaction Properties (Resol형 페놀수지의 합성과 반응특성)

  • Kim, Dong-Kwon;Joe, Ji-Eun;Kim, Jung-Hun;Park, In Jun;Lee, Soo-Bok
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.288-291
    • /
    • 2005
  • Resol type phenol-formaldehyde (PF) resin was synthesized by addition reaction of formaldehyde (F) and phenol (P). And the PF resin was synthesized by condensation reaction in which water was removed. In this work, we studied the influence of experimental parameters in the addition reaction, such as F/P mole ratio, amount of catalyst, reaction temperature, reaction time, and so on. Also, we studied the influence of molecular weight and viscosity of PE resin as a function of condensation time. As a result, in addition reaction, the reaction time decreased remarkably as the catalyst concentration increased, and the time decreased with increasing reaction temperature at a constant catalyst concentration. Also, in condensation reaction, the viscosity of resol type PF resin increased from 1500 to 9000 cps as a function of condensation time; molecular weight showed from 500 to 1100 g/mol.

Effect of Reaction Temperature Program on Thermal Degradation of Low-quality Pyrolytic Oil for Bench-scale Continuous Reaction System (벤치 규모 연속반응시스템에서 저급 열분해유 분해반응에 대한 반응온도 프로그램의 영향)

  • Lee, Kyong-Hwan;Nam, Ki-Yun
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.186-193
    • /
    • 2009
  • The characteristics of product materials obtained from thermal degradation of low-qualify pyrolytic oil were investigated in this study. The reactants were produced by pyrolysis of mixed plastic waste with film type in a commercial rotary kiln reaction system. The properties of reactants were measured by elemental analysis, calorimetry analysis and SIMDIST analyst. The result of degradation experiments with different reaction temperature programs was discussed through product yields, cumulative yields and production rates of oil products. The multi-step reaction temperature program resulted in higher yields of product oils and lower yields of residues than one-step reaction temperature program. The product characteristics such as production yield and the rate of oil products etc. were influenced by reaction temperature program in the continuous thermal degradation.

A Study on the Degradation Mechanism of Diazinon and the Acute Toxicity Assessment in Photolysis and Photocatalysis (광반응과 광촉매 반응을 이용한 Diazinon 농약의 분해 기전과 독성 평가에 관한 연구)

  • Oh, Ji-Yoon;Kim, Moon-Kyung;Son, Hyun-Seok;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1087-1094
    • /
    • 2008
  • Diazinon is a phosphorothiate insecticide widely used in the world including Korea. This study investigates the feasibility of photolysis and photocatalysis processes for the degradation of diazinon in water. Both photolysis and photocatalysis reactiosn were effective in degrdading diazinon, however lower TOC removals were achieved. In case of photocatalysis, approximately 40% of nitrogen from diazinon was recovered as NO$_3^-$, and less than 5% of phosphorus as PO$_4{^{3-}}$. However, the sulfur in diazinon molecule was completely recovered to SO$_4{^{2-}}$ from photocatalysis reaction, and the recovery from photolysis was 50%, indicating that P=S bond easily breaks first during photolysis and photocatalysis. The poor recoveries of ionic byproducts and TOC from photolysis and photocatalysis indicate the presence of other organic intermediates during reactions. The formation of organic intermediates were identified during reactions using GC/MS and LC/MS/MS, and the main degradation products were diazoxon, and 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMP), respectively. Finally, the acute 48-hr toxicity test using Daphnia magna were employed to measure the toxicity reduction during photocatalysis of degradation. The results showed that the toxicity increased until 180 min of the photocatalysis reaction (from EC$_{50}$ (%) of 69.6 to 13.2%), however, acute toxicity completely disappeared (>100%) after 360 min. The toxicity results showed that the intermediates from photocatalysis such as diazoxon were more toxic than diazinon itself, however these intermediates can be degraded or mineralized with further reaction.

Degradation of Triclosan by the Photolysis, the Fenton, and the Hybrid Reaction with Fe$^{2+}$ and UV : A Comparative Study (광반응, 펜톤, 그리고 Fe$^{2+}$와 UV의 조합반응을 이용한 Triclosan의 분해 : 공정 비교 연구)

  • Son, Hyun-Seok;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.517-523
    • /
    • 2008
  • The degradation mechanism of Triclosan(TCS), which is a potent broad-spectrum antimicrobial agent and has been considered as an emerging pollutant, was investigated in the Fenton and the hybrid reaction with Fe$^{2+}$ and UV-C. The results show that the Fe$^{2+}$ is oxidized to 30% by $H_2O_2$, 28% by UV-C, and 15% by UV-A for 10 min. The degradation rate of TCS for beginning time(10 min) was higher in UV-C only reaction than that in hybrid reaction, which of the order was inverted according to the lapse of reaction time. The effect of methanol was the greatest in Fenton reaction, in which the degradation rate of TCS decreased from 90% to 5% by the addition of methanol. Chloride, ionic intermediate, was produced to 77% for 150 min of hybrid reaction(Fe$^{2+}$ + UV-C), which was the greatest. In case with methanol, the generation rate of chloride for 15 min was ignorable in all reactions($\leq$2%) but the hybrid reaction with Fe$^{2+}$ and UV-C(12%). Additionally, the removal rate of TOC in each reaction was estimated as the followed orders; Fe$^{2+}$ + UV-C > Fe$^{2+}$ + $H_2O_2$ > Fe$^{2+}$ + UV-A > UV-C > UV-A. However, the Fenton reaction was almost stopped after 90 min because the reaction between Fe$^{2+}$ and $H_2O_2$ cannot be kept on without adding the oxidant. The phenomena was not observed in the hybrid reaction. In view of generating chloride, the reductive degradation of TCS may be in the hybrid reaction with Fe$^{2+}$ and UV-C, which is favorable to mineralize halogenated organic compounds such as TCS. Consequently, the hybrid process with Fe$^{2+}$ and UV-C may be considered as the alternative treatment method for TCS.

A Study on the Reactivity Effect due to Expansion of Diagrid and Pad (Diagram와 Pad의 팽창에 의한 반응도 효과에 대한 연구)

  • Young In Kim;Keun Bae Oh;Kun Jong Yoo;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.70-79
    • /
    • 1984
  • With the help of the nuclear computational system for a large LMFBR (KAERI-26 group cross section library/1DX/2DB), the reactivity coefficients for the diagrid expansion and the pad expansion at the beginning of cycle of the equilibrium core of SUPER-PHENIX I are calculated and reviewed. the core is described using R-Z geometry model, and a two-dimensional multigroup diffusion theory is used. For reference cases, reactivity calculations for radial and axial uniform expansion are performed, and also calculated are reactivity variations due to changes in material density and core volume. The reactivity coefficient for the diagrid expansion is calculated to be -0.553pcm/mil. The temperature coefficient corresponding to the above value is -1.0766pcm/$^{\circ}C$ and is well in accord with the French datum of -1.09pcm/$^{\circ}C$ within 1.2% difference. With the use of 4he calculational method for the diagrid expansion effect, reactivity calculations for the pad expansion bringing about nonuniform expansion are performed, which show that the calculational method is very useful in the analysis of the pad expansion effect. The reactivity coefficients for the pad expansion are calculated to be -0.2743 pcm/mil and -0.2786pcm1mi1 for the averaged expansion model and for the integrated pancake model, respectively. Under the assumption of the free expanding core the temperature reactivity coefficients for each model are obtained to be -0.5766pcm/$^{\circ}C$ and -0.5858pcm/$^{\circ}C$, both of which agree with the French datum of -0.574pcm/$^{\circ}C$ within 2% difference.

  • PDF

Thermal Characteristics of LaMnO3 Non-isothermal Synthesis Reaction (LaMnO3 비등온 합성반응의 열적특성)

  • Jeon, Jong Seol;Lee, Jung Hun;Yoon, Chang Hyeok;Yoo, Dong Jun;Lim, Dae Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.404-409
    • /
    • 2016
  • Thermal Characteristics and kinetic parameters of $LaMnO_3$ synthesis reaction were investigated by means of TGA (Thermogravimetric analysis) at non-isothermal heating conditions (5.0, 10.0, 15.0 and 20.0 K/min). The reaction was occurred rapidly at 450~600K (X=0.4~0.7) depending on the heating rate. Activation energy for the synthesis of $LaMnO_3$ from the precursor, which was determined by different method such as Friedman, Ozawa-Flynn-Wall and Vyazovkin methods, was in the range of 23~243 kJ/g-mol depending on the fractional conversion level and estimation method. The reaction order decreased with increasing heating rate and fractional conversional level. The average reaction order was 4.50 in case of X=0.1~0.3, while it was 1.87 in case of X=0.7~0.9, respectively. The value of frequency factor of reaction rate increased with inceasing heating rate and fractional conversion level. The aveage value of frequency factor was 205.6 ($min^{-1}$) when X=0.1~0.3, while it was 475.2 ($min^{-1}$) when X=0.7~0.9, respectively.

Effects of Ultraviolet Radiation on the Skin (자외선에 의한 피부반응)

  • Youn, Jail-Il
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.3
    • /
    • pp.181-186
    • /
    • 1995
  • UV irradiation causes a variety of biologic effects on the skin. These effects can be devided to acute reactuons and chronic reacxtions by duration of UV irradiation. Acute reactions are erythema reaction, pigment reactions and changes in epidermal thickness. Among them erythema reaction is most common and conspicuous acute effects of the skin. Upon exposure to sun or artificial UV soures, a faint redness response of skin may begin. Larger exposure causes sunburn reaction which is exaggerated erythema reactionassociated with pain, swelling, vesicle and dulla. Extent and time course of erythema reaction depend upon several factors including wavelength and dose of UVR, skin conditions likeas skin type, site, color, temperature, humidity and environmental factors. Evaluation of erythema erythema induced by UV irradiation is difficult to quantify. Degree of redness of skin are usually estimated by subjective visual evaluation. The lowest exposure dose required to protuce erythema is called minimal erythema dose (mod). Repeated exposures of UVR result in photaging skin. In this condition we can see wrinkling, skin atrophy, dilated blood vessels and keratoses. In sensitive persons photocarcinogenesis is can Be developed on exposed area of skin. Recently skin canser is increasing now in our country. An effective public education and photopreventive method must be developed.

  • PDF

Preparation of Aliphatic Polyester by Lipase Catalyzed Transesterificatoin in Anhydrous Organic Solvents (유기용매에서 Lipase에 의한 지방족 폴리에스터의 합성)

  • 박현규;장호남
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 1994
  • Enzyme-catalyzed polycondensatlon reaction of aliphatic polyesters with several repeating units was studied using the biocatalytic activities of lipases from different sources. Porcine pancreatic lipase (PPL) was found to be best in utilizing bls(2,2,2-trichloroethyl) glutarate and 1,4-butanediol as substrafes. The reaction was also catalyzed to some extent by the lipases from Humicola lanuginos and Psudomonas sp. In the series of short-chain diols(C2-C4), bis(2,2,2-trichloroethyl) glutarate was iransesterified fastest with 1,4-butanediol and for the long-chain diols (PEG-300-PEG-1000), the reaction was fastest with PEG-400. With PEGs, only monoesterification product was obtained. PPL functioned well in relatively hydrophilic organic solvents such as tetrahydrofuran(THF), ether and acetonitrile. The reaction rate was accelerated as the reaction temperature was raised from $20^{\circ}C$ to $60^{\circ}C$ while Mn values of the reaction products were not affected by the reaction temperature. End group analysis by NMR showed that Mn values of the polymer were in the range of 1500-4000 daltons.

  • PDF

Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor (분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성)

  • Park, Hoon Chae;Lee, Byeong-Kyu;Kim, Hyo Sung;Choi, Hang Seok
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • Several types of reactors have been used during the past decade to perform fast pyrolysis of biomass. Among the developed fast pyrolysis reactors, fluidized bed reactors have been widely used in the fast pyrolysis process. In recent years, experimental studies have been conducted on the characteristics of biomass fast pyrolysis in a spouted bed reactor. The fluidization characteristics of a spouted bed reactor are influenced by particle properties, fluid jet velocity, and the structure of the core and annulus. The geometry of the spouted bed reactor is the main factor determining the structure of the core and annulus. Accordingly, to optimize the design of a spouted bed reactor, it is necessary to study the pyrolysis characteristics of biomass. However, no detailed investigations have been made of the fast pyrolysis characteristics of biomass in accordance with the geometry of the spouted bed reactor. In this study, fast pyrolysis experiments using Jatropha curcas L. seed shell cake were conducted in a conical spouted bed reactor to study the effects of reaction temperature and reactor cone angle on the product yield and pyrolysis oil quality. The highest energy yield of pyrolysis oil obtained was 63.9% with a reaction temperature of $450^{\circ}C$ and reactor cone angle of $44^{\circ}$. The results showed that the reaction temperature and reactor cone angle affected the quality of the pyrolysis oil.