• 제목/요약/키워드: 반응기 온도

Search Result 1,521, Processing Time 0.018 seconds

MOCVD 반응기의 온도분포가 필름 성장율에 미치는 영향에 대한 연구

  • 김병호;임익태;김광선
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.147-153
    • /
    • 2004
  • 본 연구에서는 MOCVD 반응기의 온도분포가 필름 성장률에 미치는 영향에 대해 분석하였다. 온도해석에는 반응기 벽면의 전도열전달과 기체의 대류열전달이 포함되었다. 또 서셉터와 실험에 사용된 그래파이트 평판 사이의 웨이퍼 미세 간극을 해석에 포함하여 반응기 내부의 온도를 예측하였다. 정밀한 온도해석을 통해 얻은 반응기의 온도 분포를 이용하여 GaAs와 InP의 필름성장률을 해석하였으며 그 결과 미세 틈새가 GaAs의 필름 성장률에 영향을 미치는 것을 확인하였다.

  • PDF

Gas phase temperature profile measurement of an upflow OMVPE reactor by laser Raman spectroscopy (레이저 라만 분광법을 이용한 도립형 OMVPE 반응기의 기상 온도 분포 측정)

  • ;Timothy J. Anderson
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.448-453
    • /
    • 1998
  • An inverted, stagnation point flow OMVPE reactor was studied by laser Raman spectroscopy. Pure rotational Raman scattering by the carrier gas $(N_2; or; H_2)$ was used to determine the axial centerline temperature profile in the reactor as a function of the inlet flow velocity and the rector aspect ratio. A larger temperature gradient normal to the susceptor surface was obtained with higher gas glow velocity, larger aspect ratio, and the use of a $N_2$ carrier gas.

  • PDF

A study of the removal efficiency of acidic gas at various operating conditions using Computation Fluid Dynamics (전산유체역학을 이용한 반건식 반응기의 운전조건에 따른 산성가스제거효율에 관한연구)

  • Lee, Geon-Ju
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.93-101
    • /
    • 2011
  • The modeling of SDR was carried out for the application of the solid waste incineration system. To find optimum operating condition for removal of acidic gases, computation fluid dynamic(CFD) model was used. In this study, the temperature profile of SDR(spray dry reactor) and the gas velocity profile for different models were investigated. In this model, the diameter of SDR was 3 meter and the height of SDR was 9 meter. The amount of inlet combustion gas of SDR was $6,125Nm^3/hr$ and the inlet temperature of SDR was 493 K. The amount of lime injection of SDR was 151 kg/hr. When the inlet shape of SDR was changed, the temperatur of SDR was changed and the gas velocity of SDR was 0.48 m/sec to 1.17m/sec and the outlet gas velocity of SDR was 6.9 m/sec to 7.42m/sec As a result of modeling, the average velocities in SDR and outlet were 0.489 m/sec and 7.424 m/sec, respectively, in which the temperature of outlet in SDR was 448 K.

Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production (무수마레인산 생산을 위한 고정층 촉매 반응기 설계)

  • Yoon, Young Sam;Koo, Eun Hwa;Park, Pan Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-476
    • /
    • 1999
  • This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

  • PDF

Temperature Control in Autothermal Reforming Reactor (메탄올 자열 개질 반응기에서의 온도제어)

  • Kim, Song Joo;Nam, Ji Hoon;Lee, Jietae;Kim, Dong Hyun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.12-16
    • /
    • 2007
  • Temperature control of an autothermal methanol reforming reactor which uses the copper-zinc oxide catalyst was studied. Temperature at 1cm below the hot-spot point in the reactor was used for the controlled variable, and the air flow rate was used for the manipulated variable. A first order plus time delay model was identified and controller parameters were obtained by applying the IMC-PI tuning rule to the identified model. With this controller, we could control the reforming reactor temperature within ${\pm}5^{\circ}C$ over 100 hours. Change of the hot-spot point due to the catalyst degradation was investigated and it could be used to design an adaptive controller.

Fast Pyrolysis Characteristics of Jatropha Curcas L. Seed Cake with Respect to Cone Angle of Spouted Bed Reactor (분사층 반응기의 원뿔각에 따른 Jatropha Curcas L. Seed Cake의 급속열분해 특성)

  • Park, Hoon Chae;Lee, Byeong-Kyu;Kim, Hyo Sung;Choi, Hang Seok
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.161-167
    • /
    • 2019
  • Several types of reactors have been used during the past decade to perform fast pyrolysis of biomass. Among the developed fast pyrolysis reactors, fluidized bed reactors have been widely used in the fast pyrolysis process. In recent years, experimental studies have been conducted on the characteristics of biomass fast pyrolysis in a spouted bed reactor. The fluidization characteristics of a spouted bed reactor are influenced by particle properties, fluid jet velocity, and the structure of the core and annulus. The geometry of the spouted bed reactor is the main factor determining the structure of the core and annulus. Accordingly, to optimize the design of a spouted bed reactor, it is necessary to study the pyrolysis characteristics of biomass. However, no detailed investigations have been made of the fast pyrolysis characteristics of biomass in accordance with the geometry of the spouted bed reactor. In this study, fast pyrolysis experiments using Jatropha curcas L. seed shell cake were conducted in a conical spouted bed reactor to study the effects of reaction temperature and reactor cone angle on the product yield and pyrolysis oil quality. The highest energy yield of pyrolysis oil obtained was 63.9% with a reaction temperature of $450^{\circ}C$ and reactor cone angle of $44^{\circ}$. The results showed that the reaction temperature and reactor cone angle affected the quality of the pyrolysis oil.

Characteristics of $\beta$-Glucosidase Immobilized on the Modified Chitin in Bioresctors (수식 Chitin에 고정된 $\beta$-Glucosidase의 동특성)

  • 이경희;김종덕김병우송승구
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.279-291
    • /
    • 1990
  • Partial hydrolysed and deacetylated chitin, CHITA and CHITB as supports of immobilized enzyme were obtained by treatment of acid and base respectively. Glutaraldehyde, bifunctional reagent, was employed for crosslinking between $\beta$-glucosidase and support. Immobilized enzyme activities of CHITA-Gase and CHITB-Gase were determined with the reaction of p-nitrophenol-$\beta$-D-glucopyranoside(PNG) in batch reactor, CSTR and PFR. Their optimum temperature, pH and enzymatic characteristics including Km and Vmax values were observed with variation of the flow rates. Mass transfer coefficient(h), effectiveness factor(η), deactivation rate(kd ) of two immobilized enzymes were also examined to compare efficiency of reactors.

  • PDF

Investigation of the Heterogeneous Decomposition of Ammonia in an Inverted, Stagnation-point Flow Reactor (전도된 정체점 흐름을 갖는 반응기에서 암모니아의 비균질 분해 반응 연구)

  • Hwang, Jang Y.;Anderson, Tim
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.287-291
    • /
    • 2009
  • The heterogeneous decomposition of ammonia on a quartz surface in an inverted, stagnation-point flow reactor was investigated using a measurement reactor and a numerical model of the reactor. In the experiments, 8 mole% of ammonia in nitrogen was used and the temperature of an electric heater was set in the range $300{\sim}900^{\circ}C$ to heat the quartz surface where the decomposition took place. Gas temperatures and ammonia concentrations in the reactor obtained using in situ Raman spectroscopy were analyzed with the numerical model and it was revealed that, depending on the heater temperature, the temperature of the quartz surface was estimated to be in the range $235{\sim}619^{\circ}C$ and the activation energy of the decomposition on the surface was in the range 10.9~15.8 kcal/mol.

Study of Pilot Pre-reformer Reaction Characteristic for Internal Reforming MCFC (내부개질형 MCFC용 파일롯 예비개질기 반응 특성 연구)

  • Choi, Byungok;Lee, Sanghoon;Kim, Jaesig;Jeong, Jinhyeok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.86.1-86.1
    • /
    • 2010
  • 예비개질기(Pre-reformer)는 중대형 내부개질형 용융탄산염 연료전지(MCFC) 시스템에서 다양한 연료를 사용하기 위한 필수적인 화학반응기이다. 예비개질기는 스택 전단에 설치함으로서 스택 내부의 열균형을 유지하고, 다양한 원료를 연료로 이용할 수 있도록 하며, 황화물로부터 후단의 개질촉매 및 전극촉매를 보호하여 주개질 반응의 부담을 감소시켜 MCFC 시스템의 내구성 향상의 중요한 역할을 한다. 본 연구는 예비개질 반응기 설계에 CFD 모델링을 적용하기에 앞서 파일롯 반응기 내 농도/ 온도 구배를 측정하고자 하는 목적으로 수행되었다. 반응가스로는 천연가스 내 고차탄화수소(C2 이상) 중 상대적으로 높은 농도를 가진 에탄을 이용하였고, MCFC용 예비개질기의 운전특성을 고려하여 비교적 낮은 온도와 높은 수증기/탄소 비에서 단열반응기로 실험을 진행하였다. 향후 본 실험결과를 이용하여 CFD 모델링에 대한 검증을 수행할 예정이며, 하수처리장부생가스(ADG)/ 매립지 가스(LFG)용 MCFC 시스템을 위한 예비개질기 설계에도 적용을 하고자 한다.

  • PDF

Optimal Design of Carbon Dioxide Dry Reformer for Suppressing Coke Formation (코크 생성 억제를 위한 이산화탄소 건식 개질 반응기의 최적 설계)

  • Lee, Jongwon;Han, Myungwan;Kim, Beomsik
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.176-185
    • /
    • 2018
  • As global warming accelerates, greenhouse gas reduction becomes more important. Carbon dioxide dry reforming is a promising green-house gas reduction technology that can obtain CO and $H_2$ which are high value-added materials by utilizing $CO_2$ and $CH_4$ which are greenhouse gases. However, there is a significant coking problem during operation of the dry reforming reactor. Because the carbon dioxide dry reforming is a strong endothermic reaction, the temperature of the reactor drops near the reactor inlet and causes coke formation. To solve this problem, it is important to ensure that the reaction takes place in a temperature range where coke production is minimized. In this study, we proposed a design method that can maintain reaction temperature in the region where the coke is rarely generated by using the new catalyst configuration method. The design method also optimizes the reactor by solving the optimization problem which minimizes the reactor length for a given reaction conversion by using the fuel flow rate, catalyst density, and output temperature by section as optimization variables.