• 제목/요약/키워드: 반응경로도

Search Result 660, Processing Time 0.026 seconds

Pigmentation of Claviceps species after on Tryptophan Media (Tryptophan 배지상에서의 Claviceps species에 의한 색소 생합성)

  • Cho, Sung-Hwan;Anderson, John A.
    • Applied Biological Chemistry
    • /
    • v.25 no.3
    • /
    • pp.155-160
    • /
    • 1982
  • Claviceps purpurea PRL 1980 produces a fluorescent reddish brown pigment in the alkaloid production medium. When D,L-tryptophan $[side\;chain-3-^{14}C]$ was administered into the production medium, the radioactive pigment and 5-hydroxytryphan were isolated from the cultures. Conversion of tryptophan to 5-hydroxytryptophan in vivo was shown by an isotopic trapping procedure. 5-hydroxytryptophan isolated from the cultures contained appreciable radioactivity and was recrystallized to constant specific radioactivity. The injection of the $^{14}C-labelled$ 5-hydroxytryptophan showed an incorporation of radioactivity into brown pigment significantly higher than that of tryptophan. The brown pigment produced by Claviceps purpurea PRL 1980 seems to be derived from tryptophan through 5-hyrdroxytryptophan.

  • PDF

Inhibitory effects of grapefruit seed extract(DF-100) on growth and toxin production of Penicillium islandicum (자몽종자 추출물(DF-100)이 Penicillium islandicum생육 및 독소 성분 skyrin생합성에 미치는 저해효과)

  • Cho, Sung-Wan;Seo, Il-Won;Choi, Jong-Duck;Joo, In-Saeng
    • Applied Biological Chemistry
    • /
    • v.33 no.2
    • /
    • pp.169-173
    • /
    • 1990
  • The anthraquionone mycotoxin, skyrin, is produced by Penicillium islandicum. DF-100 which was extracted from grapfruit seed extract and is a natural organic complex inhibited the biosynthesis of skyrin by Penicillium islandicum. This study was carried out to determine the potential of DF-100 to support Penicillium islandicum and skyrin production. DF-100 inhibited the growth of the fungus at 750ppm or less and caused complete inhibition of skyrin production at 500ppm or less. DF-100 appears to block the incorporation of emodinathrone into skyrin and an enzymatic step in the skyrin biosynthetic pathway which lies before skyrinanthrone.

  • PDF

A Study on the Reaction Pathway of Cation and Volatile Acids in a Downflow Multistage Anaerobic Packed Bed Bioreactor (하향흐름 다단식 혐기성 고정층 반응기에서 양이온과 유기산의 반응 경로에 관한 연구)

  • 최석규;김용대;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.39-46
    • /
    • 1992
  • It has known that the intermediates formed in acid reactions occuring during anaerobic reactions for instance, acetic acid, propionic acid and butyric acid have significant effects or the formations of biogases(e. g. mainly CH$_{4}$ and CO$_{2}$). A study on the effects of these intermediates for the formations of biogases, however, is still on initial stage due to the type and structural problems of reactor. The primary objective of this reserch program is to provide a funadmantal mechanism of involved reactions using a modified downflow multistage pecked bed bioreactor. As a first stage of this reaserch program, the following theoretical principles was applied 1. Principle of electroneutrality where the molar concentrations of cation and anion in solution are the same. 2. Relationship between the concentration of bicarbonate anion and pH as follows [HCO$_{3}^{-}$]= $K_{H}P_{T}Y_{CO_{2}}10^{pH-K_{1}}$ Based upon the above two principles, a series of experimental works was conducted to elucidated the relationship between the concentration of CO$_{2}$ and the pH related to the concentrations of cations and anions.

  • PDF

산화아연 나노로드기반 광검출소자 제작 및 특성

  • Go, Yeong-Hwan;Jeong, Gwan-Su;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.189.2-189.2
    • /
    • 2013
  • 1차원 산화아연 나노구조물은 광대역 에너지 밴드갭(~3.3 eV)과 독특한 물리적 특성을 갖고 있어, 전계효과 트랜지스터(field effect transistor), 발광다이오드(light emitting diode), 자외선 광검출기 (ultraviolet photodetector) 및 태양전지(photovoltaic cell)에 널리 이용되고 있다. 특히, 1차원 산화아연 나노구조물은 직접천이형 에너지 밴드갭(direct bandgap)을 갖고 있으며, 빛으로부터 여기된 전자가 1차원 나노구조물을 통해 향상된 이동경로를 제공할 수 있어서 차세대 자외선 광검출기 응용에 대한 연구가 활발히 진행되고 있다. 한편, 수열합성법(hydrothermal method)을 통해서 1차원 산화아연 나노구조물을 비교적 간단하고 저온공정을 통해서 합성할 수 있는데, 이를 광검출기 소자구조에 응용에서 양전극에 연결하기 위해서는 복잡하고 정교한 공정이 필요하다. 이에 본 연구에서는 수열합성법을 통해 합성된 산화아연 나노로드가 포함된 에탄올 용액을 금(Au) 패턴에 drop-casting을 통해서 간단한 방법으로 metal-semiconductor-metal (MSM) 광검출기를 제작하여 광반응 특성을 분석하였다. 또한 염료를 통해 가시광을 흡수하여 광전류(photocurrent)를 발생시킬 수 있도록 염료를 흡착한 산화아연 나노로드를 이용하여 같은 구조의 MSM 광검출기를 제작하여 가시광에 대한 광반응 특성을 관찰하였다.

  • PDF

Time-resolved polarization and depolarization tracking on reaction pathway of calcium carbonates in a view of non-classical nucleation theory (비전통핵생성 이론 관점에서 탄산칼슘의 반응경로에 대한 시간분해 분극 및 탈분극 추적)

  • Kim, Gwangmok
    • Journal of Urban Science
    • /
    • v.9 no.2
    • /
    • pp.45-50
    • /
    • 2020
  • The formation characteristics of calcium carbonates are closely related to the durability and mechanical properties of cement-based materials. In this regard, a deep understanding of the reaction pathway of calcium carbonates is critical. Recently, non-classical nucleation theory was summarized and it was presumed that prenucleation clusters are present. The formation of the prenucleation cluster at undersaturated condition (≈ 0.1 ml) in the present study was investigated via electrical characteristics of an electrolytic solution. Calcium chloride dihydrate (CaCl2·2H2O) and sodium carbonate (Na2CO3) were used as starting materials to supply calcium and carbonate sources, respectively. Furthermore, the reaction pathway of calcium carbonates was investigated by time-resolved polarization and depolarization characteristics of the electrolytic solution. The time-resolved polarization and depolarization tests were conducted by switching polarity with an interval of 20 seconds for 1 hr and by measuring the variation of electrical resistance. It can be inferred from the results obtained in the present study that the reactive constituent for the formation of calcium carbonates was mostly consumed in the period possibly associated with the prenucleation and the reaction pathways may be governed by the monomer-addition mechanism.

Investigation of Thermal/hygrothermal Aging Effects on the Ignition Characteristics of Ti Metal-based Pyrotechnics and Construction of the Aging Models (열/수분노화로 인한 Ti 금속 기반의 파이로 물질의 점화 성능 변화와 노화 모델 제시)

  • Oh, Juyoung;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.26-41
    • /
    • 2021
  • Titanium hydride potassium perchlorate (THPP) has played an important role as initiators of the propulsion system. However, the 'aging' may cause performance degradation and even give rise to a failure in the total system. In this study, various hygrothermal aging conditions were considered and the aging effects on thermodynamic and ignition characteristics of THPP are provided via thermal analysis and ignition measurements. Also, physical-chemical changes were identified by morphological analysis. In conclusion, thermal aging led to Eα decrease-high reactivity due to oxidizer decomposition whereas hygrothermal aging gave rise to an opposite tendency by fuel oxidation.

A Study on Direct Decomposition and Selective Catalytic Reduction of NO over Ru-HZSM-5 Catalyst in the Presence of Excess Oxygen (과잉 산소 존재 하에서 Ru-HZSM-5촉매를 사용한 NO 분해 반응 및 선택적 촉매 환원 반응에 관한 연구)

  • Bae, Jae Yong;Chung, Sang Chul;Lee, Wha Young
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.355-360
    • /
    • 1998
  • Reduction activity of precious metal-loaded HZSM-5 for NO has been studied and was compared to that of Cu-HZSM-5 in the presence of excess oxygen. It was found that among the catalysts used in this study, Ru-HZSM-5 was the most active catalyst for the reduction of NO to $N_2$ in the absence of hydrocarbon reductant. The highest conversion obtained was 45%. No severe inhibition of water vapor to the reduction was observed. It is suggested that the higher catalytic activity of Ru-HZSM-5 may result from the better ability to oxidize NO to $NO_2$ in the presence of excess oxygen. A proposed reaction mechanism for the reduction of NO to $N_2$ in the presence of excess oxygen is that NO is oxidized to $NO_2$ on the surface of Ru-HZSM-5 catalyst and the adsorbed $NO_2$ on the surface is then decomposed to $N_2$. $NO_2$ is supposed to the reaction.

  • PDF

Optimization of LC-MS/MS for the Analysis of Sulfamethoxazole by using Response Surface Analysis (반응표면분석법을 이용한 설파메톡사졸의 액체크로마토그래프-텐덤형 질량분석 최적화)

  • Bae, Hyo-Kwan;Jung, Jin-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.825-830
    • /
    • 2009
  • Pharmaceutical compounds enter the water environment through the diverse pathways. Because their concentration in the water environment was frequently detected in the level of ppt to ppb, the monitoring system should be optimized as much as possible for finding appropriate management policies and technical solutions. One Factor At a Time (OFAT) approach approximating the response with a single variable has been preferred for the optimization of LC-MS/MS operational conditions. However, it is common that variables in analytical instruments are interdependent. Therefore, the best condition could be found by using the statistical optimization method changing multiple variables at a time. In this research, response surface analysis (RSA) was applied to the LC-MS/MS analysis of emerging antibiotic compound, sulfamethoxazole, for the best sensitivity. In the screening test, fragmentation energy and collision voltage were selected as independent variables. They were changed simultaneously for the statistical optimization and a polynomial equation was fit to the data set. The correlation coefficient, $R^2$ valuerepresented 0.9947 and the error between the predicted and observed value showed only 3.41% at the random condition, fragmentation energy of 60 and collision voltage of 17 eV. Therefore, it was concluded that the model derived by RSA successfully predict the response. The optimal conditions identified by the model were fragmentation energy of 116.6 and collision voltage of 10.9 eV. This RSA can be extensively utilized for optimizing conditions of solid-phase extraction and liquid chromatography.

Influence of Operating Parameters on Nitrite Accumulation in a Biofilm Reactor and Supplement of External Carbon Source for Denitrification by Sewage Sludge Solubilization (생물막 반응조에서 아질산염 축적에 미치는 운전인자 영향과 하수슬러지 가용화에 의한 탈질반응의 외부탄소원 공급에 관한 연구)

  • Ahn, Hye Min;Lee, Dae Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • A combined process consisted of a biofilm reactor and a continuously stirred-tank reactor (CSTR) was investigated for highly loaded ammonium wastewater treatment via nitrite accumulation. To enhance ammonium oxidizing bacteria over nitrite oxidizing bacteria on the surface of carriers, the biofilm reactor was operated at temperature of $35^{\circ}C$ for more than three months but the influent ammonium (500 mg-N/L) was partially oxidized to nitrite (240 mg-N/L). As pH was increased from 7.5 to 8.0, nitrite accumulation was fully achieved due to the inhibition of nitrite oxidizing bacteria under high free ammonia concentration. The biofilm reactor performance was severely deteriorated at the hydraulic retention time of 12 hr, at which incomplete nitrification of ammonia was observed. Various solubilization methods were applied to sewage sludge for enhancing its biodegradability and the combined method, alkaline followed by ultrasonic, gave the highest solubilization efficiency (58%); the solubilized solution was used as the external carbon source for denitrification reaction in CSTR. FISH analysis showed that the dominant microorganisms on the carriers were ammonium oxidizing bacteria such as Nitrosomonas spp. and Nitrospirar spp. but low amounts of nitrite oxidizing bacteria as Nitrobacter spp. was also detected.

Mechanistic Studies for Electrochemical Oxidation of ${\iota}$-Sparteine (${\iota}$-Sparteine의 전기화학적 산화반응에 대한 메카니즘의 연구)

  • Jin-Hyo Park;Chang-Soo Jin;Sung-Nak Choi;Yoon-Bo Shim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.711-716
    • /
    • 1993
  • The mechanism for electrochemical oxidation of natural alkaloid, ${\iota}$-sparteine (SP) was studied in acetonitrile solvent. The cyclic voltammogram of SP shows two irreversible anodic peaks at +0.75 V and +1.45 V vs. Ag/AgCl (0.1M AgNO$_2$ in acetonitrile) electrode. Coulometry reveals that the number of electrons involved in each oxidation peaks is in the range of 1.2∼1.3 respectively. Neutral imine radical was produced by fast deprotonation of SP radical cation formed by oxidation of one nitrogen atom in SP. Two pathways are possible for the reaction of the neutral radical: Due to the disproportionation of the radical, SP and enamine were mainly produced. Also, the 1,2-dehydrosparteinium cation was formed as minor product through the second one electron transfer oxidation of this radical. The (+)-lupanine was produced by treatment of sparteinium cation with potassium hydroxide. We have isolated and confirmed the electrolysis products using IR, GC-MS, UV-Vis, and thin-layer spectroelectrochemical method.

  • PDF