• Title/Summary/Keyword: 반수석고

Search Result 38, Processing Time 0.022 seconds

Effect of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrate from by-Product Gypsum of Phosphoric Acid Process under Water Vapor at Atmospheric Pressure (상압 수증기중에서 인산 석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.300-306
    • /
    • 1988
  • The catalytic effect of salts on formation of ${\alpha}$-calcium sulfate hemihydrate under water vapor at atmospheric pressure was studied and the formation of q-calcium sulfate hemilydrate from by-product gypsum of phosphoric acid process was investigated. The order of catalytic effect of salts are as follow: Ammonium chloride>Sodium succinate>Calcium chloride>Sodium tartrate>Magnesium chloride The prismatic crystals was formed when ammonium chloride, calcium chloride and magnesium chloride was added, whereas the needle crystals was formed when sodium tartrate was added. Ammonium chlorideis most successful in catalytic effects in formation of ${\alpha}$-calcium sulfate hermihydrate for the by-product gypsum of phosphoric acid process.

  • PDF

A Study on the Effect of Grain Content and Size on Mechanical Properties of Artificial Sedimentary Rocks (인공 퇴적암의 모래입자 크기와 함량이 역학적 성질에 미치는 영향에 관한 연구)

  • Byun, Hoon;Fereshtenejad, Sayedlireza;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.28 no.2
    • /
    • pp.156-169
    • /
    • 2018
  • The relationship between the mechanical and textural properties of sedimentary rocks has been studied for decades. However, inconsistencies in the results have arisen from both the inhomogeneity of natural rocks and the difficulties encountered in controlling just one textural factor of interest in each experiment. This work produced artificial sedimentary rocks to enable control of every independent parameter at all times. Their homogeneity lowered the deviation of the results, and thus they produced clearer correlations than for natural rocks. The samples were made by mixing bassanite powder with water and silica sand, which produced rocks consisting of sand and gypsum cement. The effect of grain content and size on mechanical properties such as uniaxial compressive strength, Young's modulus, and seismic velocity was estimated. Increasing grain content lowered the compressive strength but raised Young's modulus and seismic velocity. Overall, grain size did not linearly affect the mechanical properties of the samples, but affected them in some way. In future, these results can be compared and integrated with similar experiments using different cement or grain types. This should allow comparison of the effects of the rock constituents themselves and their interactions, with applicability to all kinds of sedimentary rocks.

A Study on Soil Improvement Agent for Rainfall-Induced Erosion on the Soil Slope (흙 사면의 강우 침식보강을 위한 토양개량제 개발에 관한 연구)

  • Kang, Dae-Heung;Kim, Young-Suk;Hwang, In-Taek;Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.237-246
    • /
    • 2021
  • With climate change, debris flow has been increasing due to the collapse and erosion of shallow slopes caused by extreme rainfall. It is preferred to an economical and eco-friendly method rather than reinforcement of soil slopes with the earth anchor or nailing method. In this study, a soil improvement agent was developed by utilizing insitu soil, leaf mold, and used harbal medicine to help sufficient vegetation. In addition, to prevent surface erosion, shear strength of the soil was increased by using micro cement and hemihydrate gypsum as additives. The optimum mix ratio of the mixture is determined by increasing the shear strength by checking the erosion progress of the ground surface layer due to rainfall through an laboratory test. The safety factor of soil slope has been improved on the slope surface reinforced by the improvement agent, and the strength of erosion has been increased, making it efficient to cope with heavy rain during wet season.

Early Hardening Behavior of Natural Hydraulic Lime Paste by Multiple Light Scattering Analysis (Multiple Light Scattering 분석법을 이용한 천연수경성석회의 초기경화 거동)

  • Moon, Ki-Yeon;Cho, Kye-Hong;Cho, Jin-Sang;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • In the present study, the multiple light scattering method was used for analysis of early hardening behavior of natural hydraulic lime (NHL) containing inorganic additives. In order to improve the properties of self-manufactured NHL, blast furnace slag and three types of gypsum were mixed with mixing ratio, and a water/solid ratio of fresh NHL paste was fixed 0.6. The fresh pastes in flat-bottomed cylindrical glass tubes were placed in the instrument. The backscattering flux (BS) of light from fresh pastes was then periodically measured at 10 minutes intervals the entire length of the sample (55mm) at $23^{\circ}C$ for 24 hours. The rate of increase of BS, slope of a linear equation to the mean value of BS (%) as a function of hydration time, was increased from 0.02 to 0.38 BS %/hour due to addition of blast furnace slag and gypsum. In the case of addition of hemi-hydrate, BS (%) and rate of increase in BS were highest.

Environmentally Adaptive Stabilization of the Hazardous Heavy Metal Waste by Cementious Materials(II) (산업폐기물 중의 유해중금속의 환경친화적 안정화 처리(II))

  • Won, Jong-Han;Choi, Kwang-Hui;Choi, Sang-Hul;Lee, Hun-Ha;Sohn, Jin-Gun;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1138-1142
    • /
    • 2002
  • Slag cement and supersulfated slag cement were fabricated by mixing blast furnace slag and ordinary portland cement and adapted to solidify/stabilize heavy metal contained hazardous waste sludge. In case of slag cement, it showed continuous increase of their compressive strengths, which is attributed to the formation of the C-S-H, ettringite and monosulfate with STS sludge. However, BF and COREX sludge has a different shape and composition. therefore, adequate compressive strength could not be achieved with this slag cement. In case of the mixture of the each sludge like the STS-BF or the STS-COREX, the compressive strength over the standard level for disposing the wastes could be obtained with slag cement. The supersulfated slag cement that contain accelerators was very effective in solidifying the COREX sludge, which was difficult to solidify using different cement and obtained high compressive strength only for 3 days.

Feasibility Study on CLSM for Emergency Recovery of Landfill Bottom Ash (매립장 석탄회의 긴급복구용 CLSM으로 활용 가능성)

  • Ha-Seog Kim;Ki-Suk Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • In this study, the characteristics such as flowability, bleeding rate, and strength of the CLSM (Controlled Low Strength Material) according to physical properties such as particle size distribution and particulate content of the pond ash were investigated as part of the practical development of technology for CLSM using pond ash. As a result of analyzing the properties of the collected pond ash, it was found that the density and particle size distribution characteristics were different. And that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for four hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it was determined that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

A Study on Organic-Inorganic Hybrid Sound Absorbing Materials Using by Recycling Gypsum (재활용 석고 부산물을 이용한 유무기 하이브리드 흡음재 개발 연구)

  • Shin, Hyun-Gyoo;Jeon, Bo-Ram;Ha, Joo-Yeon;Jeon, Chan-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.481-487
    • /
    • 2017
  • The purpose of this study is to develop the hybrid sound-absorbing materials that is made from organic polyurethane sponge impregnated with inorganic binder solutions. The inorganic slurry which is made from ${\alpha}$-hemihydrate gypsum mixed with 60% water, and various additives including plasticizer are used as binder. The test specimens are prepared and tested for sound absorption performance by the impedance tube methods. From the test results, noise reduction coefficient(NRC) of development materials specimen bound by the inorganic binder slurry is 0.41. They are 2 times or more higher than commercial products specimens bound by organic materials only which have NRC values in the range of 0.14 to 0.28. The polyurethane sponge specimens impregnated with inorganic gypsum slurry binder have a good balance between performance and cost, and have proper properties in density, thermal conductivity, non-combustible, and absence of harmful substances as sound-absorbing internal boards for noise barrier wall. It is apparent that the good sound absorption materials can be produced according to the optimum mix design that is recommended from this study.

Possibility of Using Landfill Coal Ash as CLSM Material for Emergency Restoration of Ground and Road Joint Parts (지반 및 도로 공동부의 긴급복구용 CLSM 재료로 매립 석탄저회 활용 가능성)

  • Jin-Man Kim;Sang-Chul Shin;Kyoung-Nam Min;Ha-Seog Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • This study aims to develop CLSM fill material for emergency restoration using landfill coal ash. As a result of examining physical properties such as particle size distribution and fines content of landfill coal ash, bottom ash, fly ash, and general soil were mixed, and SP was found to have a density of 2.03 and a residual particle pass rate of 7.8 %. CLSM materials that secure fluidity in unit quantities without using chemical admixtures such as glidants and water reducing agents have a high risk of material separation due to bleeding. As a result of this experiment, it was found that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for 4 hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it is judged that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.