• 제목/요약/키워드: 반사 고에너지 전자회절

검색결과 7건 처리시간 0.021초

고에너지 회절무늬 및 반사전자현미경 관찰을 위한 시편준비 (The specimen preparation for the high energy electron diffraction and reflection electron microscopy observation)

  • 김유택
    • 한국결정성장학회지
    • /
    • 제6권4호
    • /
    • pp.543-551
    • /
    • 1996
  • 단결정 표면 및 에피 증착증 표면에 대한 연구가 많아지면서 고에너지전자회절 및 반사전자현미겨의 이용도 늘고 있다. 국내에서는 아직 보편화 되지 않은 이들 두 기술을 위한 시편분비 과정을 요약하였고, 고에너지전자회절 연구시 매우 유용하게 쓰이는 연속 고에너지전자회절 패턴 지도 작성법에 대해 설명하고 그 예를 제시하였다.

  • PDF

분자선에피택시에 의해 성장한 GaAs/AlGaAs 양자우물의 성장 멈춤 효과 (Growth Interruption Effects of GaAs/AlGaAs Quantum Wells Grown by Molecular Beam Epitaxy)

  • 김민수;임재영
    • 한국진공학회지
    • /
    • 제19권5호
    • /
    • pp.365-370
    • /
    • 2010
  • 분자선 에피택시 방법을 이용하여 GaAs 기판 위에 GaAs 및 AlGaAs 에피층을 성장하면서 성장 멈춤 효과를 연구하였다. 성장 멈춤 시간에 따른 에피층 성장 과정은 반사 고에너지 전자회절로 측정하였다. 성장 멈춤 시간은 0, 15, 30, 60초로 하였다. 그리고 성장 멈춤 시간을 달리하여 GaAs/$Al_{0.3}Ga_{0.7}As$ 다양자우물을 성장한 후 양자우물의 특성을 조사하였다. 반사 고에너지 전자회절의 강도 진동은 성장 멈춤 시간에 영향을 받고 있었다. 그리고 양자우물의 광특성도 성장 멈춤 시간에 의존하고 있었다. 성장 멈춤 시간이 30초일 때 우물과 장벽층 사이에 급준한 계면을 가지는 에피층을 얻을 수 있었다.

직충돌 이온산란 분광법(ICISS)에 의한 고체 표면구조의 해석(2): 반도체 재료의 표면구조 해석 (Surface Structure Analysis of Solids by Impact Collision Ion Scattering Spectroscopy(2): Atomic Structure of Semiconductor Surface)

  • 황연
    • 한국결정학회지
    • /
    • 제19권1호
    • /
    • pp.7-13
    • /
    • 2008
  • 고체 표면의 구조해석 방법에는 LEED(저에너지 전자선 회절법)나 RHEED(반사 고에너지 전자선 회절법) 등과 같이 표면의 2차원적 회절상을 해석하는 방법이 있고(역격자 공간의 해석), 또는 ISS(이온산란 분광법), RBS(러더포드 후방산란법) 등과 같이 표면 원자의 실공간에 대한 정보를 직접 얻는 방법이 있다. 실제로는 두 가지 종류의 분석법을 상호 보완적으로 조합하여 효율적인 구조해석을 수행한다. 본고에서는 직충돌 이온산란 분광법(ICISS: Impact Collision Ion Scattering Spectroscopy)에 대한 원리, 장치, 측정방법 등을 소개한 전고에 이어서 이를 이용한 반도체 표면구조 해석에 관하여 기술하고자 한다. 표면의 원자구조를 알아내기 위해서는 산란된 입자의 강도를 입사각도와 출사각도에 대하여 조사하여야 하는데, 이온이 원자와 충돌하여 산란될 때 원자의 후방으로 형성되는 shadow cone에 의하여 생성되는 집속 효과(focusing effect) 및 가리움 효과(blocking effect) 중에서 ICISS는 집속 효과만을 고려하여 해석하면 실공간에서의 원자구조를 해석할 수 있다. 본 고에서는 ICISS를 이용하여 금속 또는 절연체 물질이 반도체 표면 위에서 흡착 또는 성장될 때 초기의 계면 구조 해석, 금속/반도체 계면에서 시간에 따른 동적변화 해석, III-V족 반도체의 표면구조 해석, 반도체 기판 위에서 박막 성장 과정 해석 등에 관한 연구 사례를 소개하고자 한다.

입방형 탄화규소 박막의 적층 성장 (Single Source Chemical Vapor Deposition of Epitaxial Cubic SiC Films on Si)

  • 이경원;유규상;구수진;김창균;고원용;조용국;김윤수
    • 한국진공학회지
    • /
    • 제5권2호
    • /
    • pp.133-138
    • /
    • 1996
  • 단일 선구물질인 1, 3 -디실라부탄을 사용하여 고진공 하의 온도 영역 900-$1000^{\circ}C$에서 탄화규소 환충층이 형성된 Si(001) 기질 위에 입방형 탄화규소 박막을 적층 성장시켰다. 얻어진 탄화규소 박막의 화학량론적 비, 양질의 결정성 및 표면형태의 특성을 반사 고에너지 전자 회절, Xtjs 광전자 분광법, X선 회절, Xtjs 극접도, 주사 전자 현미경 및 투과 전자 현미경으로 확인하였다. 이들 결과로부터 단일 선구물질인 1, 3-디실라부탄이 입방구조를 가지는 탄화규소 박막의 적층 성장에 적절한 물질임을 밝혔다.

  • PDF

Si(111)-$7{\times}7$ 면에서 Ti 성장과 C54 $TiSi_2$/Si(111) 정합 성장에 관하여 (Growth of Ti on Si(111)-)-$7{\times}7$ Surface and the Formation of Epitaxial C54 $TiSi_2$ on Si(111) Substrate)

  • Kun Ho Kim;In Ho Kim;Jeoung Ju Lee;Dong Ju Seo;Chi Kyu Choi;Sung Rak Hong;Soo Jeong Yang;Hyung Ho Park;Joong Hwan Lee
    • 한국진공학회지
    • /
    • 제1권1호
    • /
    • pp.67-72
    • /
    • 1992
  • 고에너지 반사 전자회절기(RHEED) 및 투과전자현미경(HRTEM)을 이용하여 Si(111)-7 $\times$ 7 면에서의 Ti 박막의 성장 mode와 Si(111) 면에서의 C54 TiSi2의 정합성장 을 조사하였다. 초고진공에서 Si(111)-7 $\times$ 7 표면에 상온에서 Ti를 증착하면 Ti/Si 계면에 서 비정질의 Ti-Si 중간막이 먼저 형성되고 그 위에 Ti 박막은 다결정으로 성장하였다. 160ML의 Ti를 증착한 시료를 초고진공 내에서 75$0^{\circ}C$로 10분 열처리하면 C54 TiSi2가 정합 성장하였으며 이는 HRTEM 격자상 및 TED Pattern으로 확인할 수 있었다. TiSi2/Si(111) 시 료를 다시 $900^{\circ}C$로 가열하면 TiSi2위에 단결정 Si층이 [111] 방향으로 성장하였다.

  • PDF

InP(001)(2×4)재구성된 표면 위에 원자층 단위로 증착된 Co 박막의 자성 특성 (Magnetic Properties of Monolayer-thiciness InP(001)(2×4) Reconstruction Surface)

  • 박용성;정종률;이정원;신성철
    • 한국자기학회지
    • /
    • 제14권3호
    • /
    • pp.89-94
    • /
    • 2004
  • 본 연구에서는 InP(2${\times}$4) 재구성된 표면 위에 원자층 단위로 증착된 Co 박막의 특성을 표면 자기광 커 효과(surface magneto-optical Kerr effect, SMOKE) 시스템, 반사 고에너지 전자 회절(reflection high energy electron diffraction), 주사 터널링 현미경(scanning tunneling microscope)이 장착된 초고진공 챔버를 이용하여 조사하였다. 실시간(in situ) SMOKE 연구 결과, Co 박막이 InP(2${\times}$4) 재구성된 표면 위에 성장할 때, Co박막의 두께에 따라 자성 특성이 대조적으로 구분되는 세 가지 두께 영역이 존재함을 확인할 수 있었다. 즉, Co 박막 두께가 7 단층(monolayer, ML)보다 작은 두께 영역에서는 가로 방향(longitudinal)과 수직방향(polar) 측정에서 모두 SMOKE신호를 관찰할 수 없었다. 8$m\ell$에서 15$m\ell$까지의 Co두께 영역에서는 수평 자기 이방성과 수직 자기 이방성이 공존하는 준안정상(metastable phase)을 관찰할 수 있었다. 그리고 마지막 영역은 16$m\ell$이상의 두께를 갖는 영역으로 수평 자기 이방 강자성을 확인할 수 있었다.