• Title/Summary/Keyword: 반사파 계수

Search Result 143, Processing Time 0.025 seconds

Acceleration of Anisotropic Elastic Reverse-time Migration with GPUs (GPU를 이용한 이방성 탄성 거꿀 참반사 보정의 계산가속)

  • Choi, Hyungwook;Seol, Soon Jee;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.74-84
    • /
    • 2015
  • To yield physically meaningful images through elastic reverse-time migration, the wavefield separation which extracts P- and S-waves from reconstructed vector wavefields by using elastic wave equation is prerequisite. For expanding the application of the elastic reverse-time migration to anisotropic media, not only the anisotropic modelling algorithm but also the anisotropic wavefield separation is essential. The anisotropic wavefield separation which uses pseudo-derivative filters determined according to vertical velocities and anisotropic parameters of elastic media differs from the Helmholtz decomposition which is conventionally used for the isotropic wavefield separation. Since applying these pseudo-derivative filter consumes high computational costs, we have developed the efficient anisotropic wavefield separation algorithm which has capability of parallel computing by using GPUs (Graphic Processing Units). In addition, the highly efficient anisotropic elastic reverse-time migration algorithm using MPI (Message-Passing Interface) and incorporating the developed anisotropic wavefield separation algorithm with GPUs has been developed. To verify the efficiency and the validity of the developed anisotropic elastic reverse-time migration algorithm, a VTI elastic model based on Marmousi-II was built. A synthetic multicomponent seismic data set was created using this VTI elastic model. The computational speed of migration was dramatically enhanced by using GPUs and MPI and the accuracy of image was also improved because of the adoption of the anisotropic wavefield separation.

Wave Absorbing Characteristics of a Horizontal Submerged Punching Plate (수평형 타공판의 소파특성)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.265-273
    • /
    • 2002
  • In this paper, wave absorbing characteristics of a horizontal submerged punching plate are investigated throughout the calculation and the experiment. The punching plate with the array of circular holes can force the flow to separate and to form eddies of high vorticity and cause significant energy loss. As an analytic tool, the linear water wave theory and the eigenfunction expansion method is applied. Darcy's law that the normal velocity of the fluid passing through the punching plate is linearly proportional to the pressure difference between two sides of the punching plate is assumed. The proportional constant called the porous coefficient is deeply dependent to the porosity. To obtain the relationship between the porosity and the porous coefficient the systematic model test for the punching plates with 6 different porosities is conducted at 2-dimensional wave tank. It is found that the porous coefficient is linearly proportional to the porosity(b=57.63P-0.9717). It is also noted that the optimal porosity value is near P=0.1 and the optimal range of submergence depth is $d/h\\leq0.2$ within entire frequency range.

Analysis for the RCS of a Trihedral Corner Reflector with Consideration of the Effect of Front Surface (지표면 영향을 고려한 삼각 전파 반사기의 RCS 분석)

  • Shin, Jong-Chul;Kweon, Soon-Koo;Oh, Yi-Sok;Kim, Se-Young;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.723-730
    • /
    • 2012
  • The radar cross section(RCS) of a trihedral corner reflector(TCR) should be accurately computed when it is used as an external calibration target for a satellite synthetic aperture radar(SAR) calibration campaign. This paper presents the RCS analysis on a trihedral corner reflector which is installed on a calibration site, using the wave reflection from the rough surface and the wave diffraction from the TCR edges. The results in this paper show quantitatively the effect of the front surface on the RCS of a TCR. The difference of the RCS between a TCR in air and a TCR on a ground surface is computed by including the interaction term which consists of the edge diffraction from the TCR edges and the surface reflection from the front rough surface. The reflection coefficient of a randomly rough surface is a function of the surface roughness and dielectric constant of the surface. The RCS of $10{\lambda}$ size TCR on a ground is 0.46 dB higher than TCR in air at 9.65 GHz, and this can reach at maximum 1.55 dB depending on a surface condition and TCR size. The effect of the front surface on the RCS of a TCR increases, as the surface roughness decreases, the soil moisture increases, and the size of TCR in wavelength decreases.

Reflection and Transmission Coefficients by a Surface-Mounted Horizontal Porous Plate (수면 위에 놓인 수평 유공판에 의한 반사율과 투과율)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.327-334
    • /
    • 2013
  • The interaction of oblique incident waves with a surface-mounted horizontal porous plate is investigated using matched eigenfunction expansion method under the assumption of linear potential theory. The new boundary condition on the porous plate suggested by Zhao et al.(2010) when it is situated at the still water surface is used. The imaginary part of the first propagating-mode eigenvalue in the fluid region under a horizontal porous plate, is closely related to the energy dissipation across the porous plate. By changing the porosity, plate width, wave frequencies, and incidence angles, the reflection and transmission coefficients as well as the wave loads on the porous plate are obtained. It is found that the transmission coefficients can be significantly reduced by selecting optimal porous parameter b = 5.0, also increasing the plate width and incidence angle.

Numerical Analysis of Modified Seabed Topography Due to the Presence of Breakwaters of Varying Reflection Characteristics using Physics-based Morphology Model [SeoulFoam] (방파제 형식에 따른 반사율 변화가 해저지형에 미치는 영향 수치해석: 물리기반 지형모형 SeoulFoam을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.168-178
    • /
    • 2021
  • Numerical simulations were implemented to look into the modified seabed topography due to the presence of breakwaters of varying reflection characteristics. The numerical model was composed of OlaFlow, an OpenFoam-based tool box, and a physics-based morphology model [Seoul Foam]. In doing so, the interaction between the seabed, which undergoes deformation due to siltation and scouring, and the incoming waves was described using Dynamic Mesh. The rubble-mound, vertical, and curved slit caisson breakwaters with varying reflection characteristics resulted in standing waves that differ from each other, shown to have a significant influence on the seabed topography. These results are in line with Nielsen's study (1993) that sands saltated under the surface nodes of standing waves, where the near-bed velocities are most substantial, convected toward the surface antinodes by boundary-layer drift. Moreover, the crest of sand waves was formed under the surface antinodes of standing waves, and the trough of sand waves was formed under the surface antinodes. In addition, sand wave amplitude reaches its peak in the curved slit caisson with a significant reflection coefficient, and the saltation of many grains of sand would cause this phenomenon due to the increased near-bed velocity under the nodes when the reflection coefficient is getting large.

Study on Comparison of Methods for Estimation of Shear Wave Velocity in Core Zone of Existing Dam (기존 댐 코어죤의 전단파속도 산정기법 비교 연구)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.33-43
    • /
    • 2008
  • In this study, for the purpose of evaluating the shear wave velocity in core zone, cross-hole test, down-hole test, MASW (Multi-channel Analysis of Surface Wave), and seismic reflection survey were carried out on the crest of the existing 'Y' dam. The results of field tests were compared one another. Furthermore, the field test results were compared with the result by the Sawada's empirical recommendation method. The purpose of this study is to compare the results of four kinds of field tests for evaluation of shear wave velocity in core zone of existing dam, to verify applicability of the empirical method which was recommended by Sawada and Takahashi, and to recommend a reasonable method for evaluation of shear wave velocity which is needed to evaluate tile maximum shear modulus of core zone. From the results of four kinds of field tests such as cross-hole test, down-hole test, MASW, and seismic reflection survey, it was found that the shear wave velocity distributions were similar within 18 m in depth and the results obtained by MASW and seismic reflection survey were almost the same by 30 m in depth. For evaluation of shear wave velocity in core zone of the existing dam, in consideration that it is not easy to bore the hole ill the core zone of existing dam, surface surveys such as MASW and seismic reflection method are recommended as realistic methods. On condition that it is impossible to conduct the field test and it is preliminary investigation, it is recommended that Sawada's low bound empirical equation be used.

Analytical Studies for Application of SPT Dynamic Signals to Estimate the Elastic Property of the Soil Deposit (표준관입시험의 동적신호를 이용한 지반 물성치 추정의 해석적 연구)

  • 이병식;김영수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.167-177
    • /
    • 2002
  • A test method has been attempted to estimate the soil stiffness by measuring and analyzing dynamic signals of stress waves reflected at the bottom end of the SPT rod contacting a soil deposit. Before conducting a real size testing, a series of parametric studies were conducted in this paper to examine the applicability and the theoretical adequacy of the test method. As a result of these studies, it has been shown that the most significant influence factor affecting the amplitude ratio of the reflected wave to the incident wave at the rod-soil interface was the variation of soil stiffness. Also, the variation of the amplitude ratio was found to be closely related with the variation of impedance ratio of the soil deposit to the SPT rod. As a result, a potential of the test method could be proved to estimate the impedance and the elastic modulus of the soil deposit interfaced with the SPT rod using the test method.

Experimental Study on Reduction of Rup-Up Height of Sloping Breakwater due to Submerged Structure (수중 구조물에 의한 경사식 방파제의 처오름 감소에 관한 실험적 연구)

  • Park, Seung-Hyun;Lee, Seung-Oh;Jung, Tae-Hwa;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.187-197
    • /
    • 2007
  • Experimental study for a submerged structure was conducted to protect coastal structures and shorelines. The rectangular submerged structure known as the most efficient shape among various submerged structures in the literature was fabricated at the nose of a rubble mound breakwater. The reflection coefficients and the run-up heights along the slope of a breakwater were measured for different significant wave heights and periods. It is found in this study that the reflection coefficient is affected more relatively by the significant wave period than the significant wave height and the run-up heights are reduced approximately 28% in terms of ${^{RU}}_{2%}$ and 26% in terms of ${^{RU}}_{33%}$, respectively, by the installation of a submerged structure inducing the interception and breaking of waves.

A Study on the Channel Capacity of Fading Channel (페이딩 통신로의 통신 용량에 관한 연구)

  • 고봉진;황인수;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1136-1145
    • /
    • 1993
  • The channel capacities of various lading channels are calculated and compared with that of Gaussian noise channel to find out the decrements of channel capacity according to each fading environment. As a result, it is confirmed that the channel capacities in Rician and m-distribution fading channels approach to that of Gaussian noise channel as direct-to-indirect power ratio in Rician fading channel and fading index m in m-distribution fading channel increases respectively. And the difference between two channel capacities of Gaussian noise channel and each fading channel which is dependent on carrier-to-noise power ratio (CNR) is found. Also the improvement of channel capacity of Rayleigh fading channel by introducing two-branch diversities is obtained. For diversity reception, predetection maximal-ratio and postdetection selective combining techniques are adopted. The results show that the improvement of channel capacity by predetection maximal-ratio combining diversity is superior to the postdetection selective combining diversitiy regardless of correlation coefficient between two diversity branches in Raylelgh fading channel. The best improvement is achieved when two branches are noncorrelative in both two diversify techniques and as correlation coefficient of two diversity branches is smaller, the improvement of channel capacity is greater.

  • PDF

The Seismic Multipulse Deconvolution (다중펄스 방법을 이용한 디컨벌루션)

  • Shon, Howoong
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.487-491
    • /
    • 1995
  • The multipulse model of linear predictive coding (LPC), which has been successfully used for compressing of speech signals into an impulse excitation, is here applied to seismic data which contains multiples. Multiples are happened by successive reflection between layers and make the seismic interpretation difficult In this paper, the author applied the enhanced multipulse method to seismic traces to compress source-wavelets into spikes, and to eliminate/reduce multiples. The enhanced multipulse method which was applied to seismic traces extracted the amplitudes and locations of reflectivity function, which depicts the subsurface configuration, by iterative computation of autoregressive (AR) estimation method.

  • PDF