• 제목/요약/키워드: 반복 가력

Search Result 152, Processing Time 0.026 seconds

Cyclic Loading Test and an Analytical Evaluation of the Modular System with Bracket-typed Fully Restrained Moment Connections (브래킷형 완전강접합 모듈러 시스템의 반복가력실험과 해석적 평가)

  • Park, Jae-Seong;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.19-28
    • /
    • 2018
  • Key factors that ensure competitiveness of modular unit include consistent high quality and connection condition that ensures high structural performance while minimizing the overall scale of the on-site process. However, it is difficult to evaluate the structural performance of the connection of modular unit, and its structural analysis and design method can be different depending on the connection to its development, which affects the seismic performance of its final design. In particular, securing the seismic performance is the key to designing modular systems of mid-to-high-rise structure. In this paper, therefore, the seismic performance of the modular system with bracket-typed fully restrained moment connections according to stiffness and the shapes of various connection members was evaluated through experimental and analytical methods. To verify the seismic performance, a cyclic loading test of the connection joint of the proposed modular system was conducted. As a result of this study, theoretical values and experimental results were compared with the initial stiffness, hysteresis behavior and maximum bending moment of the modular system. Also, the connection joint was modeled, using the commercial program ANSYS, which was then followed by finite element analysis of the system. According to the results of the experiment, the maximum resisting force of the proposed connection exceeded the theoretical parameters, which indicated that a rigid joint structural performance could be secured. These results almost satisfied the criteria for connection bending strength of special moment frame listed on KBC2016.

Experimental Study for Seismic Behavior Analysis of a Fire Protection Riser Pipe System with Groove Joints (그루브 조인트가 설치된 수계소화설비 입상배관계통의 지진거동분석을 위한 실험적 연구)

  • Kim, Sung-Wan;Yun, Da-Woon;Kim, Jae-Bong;Jeon, Bub-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.35-42
    • /
    • 2021
  • In this study, a steel frame that realized the second floor of a structure was fabricated in referring to NFPA 13. In addition, a riser pipe system with groove joints was installed, and a seismic simulation test was performed using static cyclic loading. Cyclic loading tests on the maximum allowable side sway of seismic design standards for buildings in Korea were conducted using actuators to analyze the seismic behavior of the riser pipe system and major piping elements due to the deformation of the steel frame structure or the displacement-dominant behavior caused by the relative displacement between the structural members in the event of a seismic load. Moreover, the deformation angle of the riser pipe system was measured using an image measurement system because it is difficult to measure using the conventional sensors.

Evaluation of the Rotational Stiffness of Connections between Vertical and Horizontal Members for the Highly Reusable System Supports (재사용율이 높은 시스템 동바리의 수직재와 수평재 연결부 회전강성 평가)

  • Ji-Sun Park;Tae-Hyeob Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.517-526
    • /
    • 2023
  • To avoid arbitrary design and excessive braces of system supports with high reusability in the field, this study aimed to propose connection conditions for the vertical and horizontal joints of the system supports based on performance evaluation. Disk-type and pocket-type connection materials, widely used in domestic construction sites, were selected for evaluation of rotational stiffness based on load directions(vertical and horizontal) and loading methods (monotonic and cyclic). Contrary to the current design standards specifying a rotational stiffness of "0" for connection materials, the experimental results revealed that, contrary to the current design standards specifying a rotational stiffness of "0" for connection materials, all specimens exhibited rotational stiffness values. The maximum rotational stiffness was observed to be 19.624 kNm/rad in specimens subjected to repeated loading in the vertical direction using disk-type connection materials.

An Experimental Study on the Flexural Behavior of Composite Steel Deck Slab with Bored Openings (천공 개구부가 있는 합성슬래브의 휨거동에 관한 실험적 연구)

  • Eom, Chul Hwan;Kim, Hee Cheul;Park, Jin Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.607-614
    • /
    • 2006
  • The composite metal deck plate system has been widely used of late for office structures. However, composite floor decks are bored imprudently for installation in building equipment. In this study, experimental investigations of bored composite steel deck slabs were performed to evaluate the flexural capacity of each specimen. The variables set were the shapes and positions of the openings in the composite slabs. The results were analyzed in the form of load-displacement graphs and with respect to the ductility and energy dissipation capacity ofeach specimen to evaluate its structural capacity.

A Study on Seismic Performance for CFT Square Column-to-Beam Connections Reinforced with Asymmetric Lower Diaphragms (이형 하부다이아프램으로 보강된 각형 CFT 기둥-보 접합부의 내진성능에 관한 연구)

  • Choi, Sung Mo;Yun, Yeo Sang;Kim, Yo Suk;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.579-589
    • /
    • 2003
  • Most beam-to-column connections are symmetrically reinforced because of the reverse action caused by earthquakes. However, in weak-earthquake regions like Korea, asymmetrically reinforced connections could be used. In particular, the connections between concrete-filled tube (CFT) column and H-shape beam could be applied using a simplified lower diaphragm. The tensile capacity or Combined Cross Diaphragm for upper reinforcing was tested using a simple tension test. Four types for lower reinforcing combined Cross, none, horizontal T-bar, and vertical plate were tested using the ANSI/AISC SSPEC 2002 loading program. Horizontal T-bar and stud bolts in vertical flat, bar transmit tensile stress from the beam's bottom flange to filled concrete. All test specimens satisfied 0.01 radian inelastic rotational requirement in ordinary moment frame of AISC seismic provision. According to the results of the parametric studies simplified lower diaphragms demonstrated outstanding strength, stiffness, and plastic deformation capacity which could lead to more sufficient seismic performance in the field.

An Experimental Study on the Structural Performance of Steel Beam with Opening Close to End Subjected to Cyclic Loading (반복하중을 받는 단부에 근접한 개구부를 갖는 강재보의 구조성능에 관한 실험적 연구)

  • Han, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.2
    • /
    • pp.66-73
    • /
    • 2021
  • In the existing study of steel beams with openings, openings are located at a location where the distance to the support point is equal to or greater than the section height. Considering the facilities using the openings in the steel beam, the distance from the opening to the support point may be closer than the height of the beam section. Therefore, research on this is needed. This study is an experimental study to understand the structural performance of beams with openings close to the ends subjected to Cyclic Loading. In addition, in this study, we want to understand the structural performance through experiments on beams with openings reinforced with vertical or horizontal steel plates.

Application of Headed Bars with Small Head in Exterior Beam-Column Joints Subjected to Reversed Cyclic Loads (반복하중을 받는 외부 보-기둥 접합부에서 작은 헤드를 사용한 Headed Bar적용)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.411-420
    • /
    • 2007
  • The applicability of headed bars in exterior beam-column joints under reversed cyclic loading was investigated. A total of ten pullout tests were first performed to examine pullout behavior of headed bars subjected to monotonic and cyclic loading with test variables such as connection type between head and bar stem (weld or no weld), loading methods (monotonic or cyclic loading), and head shape (small or large circular head and square head). Two full-scale beam-column joint tests were then performed to compare the structural behavior of exterior beam-column joints constructed using two different reinforcement details: i.e. $90^{\circ}$ standard hooks and headed bars. Both joints were designed following the recommendations of ACI-ASCE Committee 352 for Type 2 performance: i.e. the connection is required to dissipate energy through reversals of deformation into inelastic range. The pullout test results revealed that welded head to the stem did not necessarily result in increased pullout strength when compared to non-welded head. Relatively large circular head resulted in higher peak load than smaller circular and square head. Both beam-column joints with conventional $90^{\circ}$ hooks and headed bars behaved similarly in terms of crack development, hysteresis curves, and peak strengths. The joint using the headed bars showed better overall structural performance in terms of ductility, deformation capacity, and energy dissipation. These experimental results demonstrate that the headed bars using relatively small head can be properly designed far use in external beam-column joint.

Experimental Study on the Confinement Effect of Headed Cross Tie in RC Column Subjected to Cycling Horizontal Load (철근콘크리트 기둥에서 반복횡력에 대한 헤드형 횡보강근의 구속효과에 대한 실험연구)

  • Seo, Soo Yeon;Ham, Ju Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.1-10
    • /
    • 2012
  • This paper presents an experimental result and suggests the confinement effect of headed cross tie in reinforced concrete(RC) columns subjected to cycling horizontal loads under constant axial load. Five RC columns specimens were manufactured, taking confined type of transverse reinforcement, whether or not using cross tie, end detail of cross tie (hooked or headed), and axial stress in column as major variables, Cyclic horizontal load applied to the columns under constant axial stress and the effect of cross tie to structural capacity of column was evaluated from the test. The column without cross tie failed showing bending deformation of hoop with crack in core concrete at low horizontal load while the column with cross tie showed quite improved strength and ductility by suppressing bending deformation of hoop as well as buckling of longitudinal bar at once even after crack in core concrete. At high lateral displacement, the column with hooked cross tie showed the failure pattern loosing the confining force of cross tie since the $90^{\circ}$ hooked part of cross tie was stretched out and the cracked core concrete lumps were came off. However, the column with headed cross tie showed very stable behavior since the head of cross tie effectively confined the hoop and longitudinal bars even at high lateral displacement.

Pile-cap Connection Behavior between Hollow-Head Precast Reinforced Concrete Pile and Foundation (프리캐스트 철근콘크리트 중공 말뚝과 기초 접합부 반복가력 거동)

  • Bang, Jin-Wook;Jo, Young-Jae;Ahn, Kyung-Chul;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.71-77
    • /
    • 2019
  • Recently, most of the pile foundations have been applied as a method to transfer the heavy load of the structure to the ground with high bearing capacity. In this study, the pile-cap behavior between foundation and hollow-head precast reinforced concrete(HPC) pile reinforced with longitudinal rebar and filling concrete was experimentally evaluated depending on the cyclic load and reinforcement ratio. As the drift ratio increases, it was found that the cracks pattern and fracture behavior of two types of pile-cap specimens according to the reinforcement ratio were evaluated to be similar. As the reinforcement ratio increases by 1.77 times, the BS-H25 specimen increases the maximum load by 1.47 times compared to the BS-H19 specimen. However, the ductility ratio of positive and negative was decreased by 76% and 70% respectively. After the yielding of the pile-cap reinforcing rebars, the positive and negative stiffness of the all specimens were decreased by a range from 66% to 71% and a range from 54% to 57% respectively, and the average stiffness of BS-H25 specimen is 13% higher than that of BS-H19 specimen. The cumulative dissipated energy capacity of BS-H19 and BS-H25 specimen under ultimate load state is 5.5 times and 6.6 times higher than that of service load state.

Capacity of Concrete Filled Carbon Tube Columns Based on the Comparison of Ductility and Energy Dissipation Capacity (연성도 및 에너지 소산능력 비교에 따른 콘크리트충전 탄소섬유튜브 기둥의 성능)

  • Lee, Kyoung-Hun;Hong, Won-Kee;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.29-35
    • /
    • 2007
  • Flexural capacity estimation test of concrete filled carbon tube (CFCT) column under the cyclic lateral load was carried out in this study. Thickness of carbon tube and winding angles of carbon fiber were chosen as test parameters and two types of column with square and circular sections were manufactured. To act axial and lateral load, three dynamic actuators were used and all specimens were made with actual size. Flexural stiffness, ability of deformation, energy dissipation capacity and ductility behavior. of CFCT column were analyzed with test data.