• Title/Summary/Keyword: 반발 부상

Search Result 27, Processing Time 0.023 seconds

Analysis and Design of a Magnetic Levitation Rail using the Repulsive Force of Permanent Magnets (영구자석의 반발력을 이용한 자기부상레일의 해석 및 설계)

  • 이강원;송창섭
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.48-54
    • /
    • 1999
  • For the high speed linear motor and the transportation device at clean room, a magnetic levitation rail without contact using the repulsive force of permanent magnets was newly developed. The characteristics of repulsive and lateral forces of the magnetic levitating system using permanent magnet was studied and the devised magnetic levitating system was evaluated by analytical and experimental approaches. This system is composed of two fixed guide rails with the rare earth permanent magnet array and a moving unit which is attached two magnet pairs at each sides. Because this system was forcedly levitated by the face to face repulsive forces, levitating air gap length can be repulsive force of an auxiliary magnetic repulsion system on the center of moving unit.

  • PDF

Capsule Train Dynamic Model Development and Driving Characteristic Analysis Considering the Superconductor Electrodynamic Suspension (초전도 유도 반발식 부상특성을 고려한 캡슐트레인 동특성 해석 모델 구축 및 주행 특성 분석)

  • Lee, Jin-Ho;Lim, Jungyoul;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.38-45
    • /
    • 2020
  • A magnetically levitating capsule train, which runs inside the sub-vacuum tube, can reach ultra-fast speeds by dramatically reducing the aerodynamic drag and friction. The capsule train uses the superconductor electrodynamic suspension (SC-EDS) method for levitation. The SC-EDS method has advantages, such as a large levitation gap and free of gap control, which could reduce the infra-construction cost. On the other hand, disadvantages, such as the large variation of the levitation-guidance gap and small damping characteristics in levitation-guidance force, could degrade the running stability and ride comfort of the capsule train. In this study, a dynamic analytical model of a capsule train based on the SC-EDS was developed to analyze the running dynamic characteristics. First, as important factors in the capsule train dynamics, the levitation and guidance stiffness in the SC-EDS system were derived, which depend non-linearly on the velocity and gap variation. A 3D dynamic analysis model for capsule trains was developed based on the derived stiffness. Through the developed model, the effects of the different running speeds on the ride comfort were analyzed. The effects of a disturbance from infrastructure, such as the curve radius, tube sag, and connection joint difference, on the running stability of the capsule train, were also analyzed.

Analysis on the Characteristics of the Superconducting Electrodynamic Suspension According to the Variation of the Ground Conductor (지상도체 변화에 따른 초전도 반발식 자기부상 특성 해석)

  • Bae, Duck-Kweon;Cho, Han-Wook;Lee, Jong-Min;Han, Hyung-Suk;Lee, Chang-Young;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1159_1160
    • /
    • 2009
  • This paper presents the numerical simulation results on the supercodnucting electrodynamic suspension (EDS) simulator according to the variation of the ground conductor. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible way to simulate the EDS system were simulated in this paper by using finite element method (FEM). The static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

  • PDF

Analysis of magnetic forces for dynamic characteristics of electrodynamic Maglcv Systcm (반발식 자기부상열차의 동특성해석을 위한 전자력계산)

  • 홍순흠;한송엽;차귀수
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.106-113
    • /
    • 1994
  • This paper deals with the magnetic forces of the combined levitation and guidance EDS(Electrodynamic Suspension) maglev system when the car bogie is tilted by the roll, pitch and yaw. The end effect on the magnetic forces are considered by calculating the air-gap flux without the assumptions for its pattern. Induced voltages and currents of the ground coils are given as results. The restoring torque due to roll, pitch and yaw of the bogie body are also examined. It has been shown that the end effect of the concentrically loaded vehicle are not negligible and the combined EDS is stable maglev system against disturbing forces.

  • PDF

Repulsive & Attractive Type Magnetic Levitation for Mechanical Isolation of the Planar Stage Mover (평면 스테이지의 이동자 접촉 배제를 위한 반발식/흡인식 자기 부상)

  • 정광석;이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.76-83
    • /
    • 2003
  • To cope with stringent performance targets requested in many fields spanning the whole range of industry, the driver is necessary to realize large dynamic range as well as nano resolution, manipulate the mover orientation without additional driver, and be suitable for clean environment. As one of those purposes, authors have developed the planar precision stages with the integrated operating principle of levitation and propel. In this paper, we discuss potential of magnetic suspension technology by comparing various features of non-contact planar stages, that is, repulsive type of surface actuator and attractive type of surface actuator.

Stability Analyses of Magnetic Levitation Tables Using Repulsions of Permanent Magnets (영구자석에 의한 반발형 자기부상 테이블의 안정성 해석)

  • Choe, Gi-Bong;Jo, Yeong-Geun;Tadahiko Shinshi;Akira Shimokohbe
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.36-42
    • /
    • 2002
  • This paper presents two actuators for levitation using repulsions of permanent magnet and two magnetic levitation tables using the actuators. Here, one actuator for levitation consists of one fixed magnet and one moving magnet, and the other actuator consists of two fixed magnets and one moving magnet. The moving part of the magnetic levitation table contains the moving magnets. repulsive forces caused by the permanent magnets are linearized, and then the equation of motion of the moving part of the table is derived. Using the equation of motion, stability conditions of the moving part are deduced. The stability conditions are analyzed for positional relations of the moving magnets and the minimum number of active control required for stable system. As a result, in the each case of magnetic levitation tables, the requirements for stabilization are expressed by the positional relations and the number of the active controls.

신교통시스템으로서의 자기부상열차 검토 1(상전도 흡인식 부상시스템을 중심으로)

  • 장석명;박찬일
    • 전기의세계
    • /
    • v.43 no.3
    • /
    • pp.18-28
    • /
    • 1994
  • 현재까지 개발되고 있는 자기부상열차는 상전도 방식과 초전도 방식의 2종류로 대별 할 수 있다. 즉 상전도방식은 상전도 전자석에 의한 흡인력에 의해 지상에서 1cm정도를 부상하여 주행하는 시스템으로 영국의 버밍행공항의 People mover, 독일의 Transrapid, 일본의 HSST, 우리나라의 한양대, 자기 부상열차사업단, 대우중공업, 현대정공의 EXPO전시운행선등이 개발되어 있다. 초전도방식으로는 초전도전류에 의한 반발력에 의해 10cm이상 부상되어 운행되는 시스템으로 MLU 시스템이 있는데 지진이 심한 일본에서 개발되었다. 영국의 버밍햄공함의 People mover는 1984년부터 실용화되어 무인자동운전시스템으로 10년간을 아무 문제 없이 운행되고는 있지만 선로길이 620m 정도의 소규모 저속운송시스템에 지나지 않는다. 반면 독일의 Transrapid시스템은 31.5km의 트랙을 설치하여 시속 450km까지 운행을 계속하여 현재 15만km정도의 운행실적을 올리고 있다. 최근 독일내각은 함부르크-베를린 사이의 290km에 이르는 선로를 2005년까지 완공하기로 결정을 내리고 금년 상반기에 착공을 할 예정이다. 따라서 세계적으로 실용화단계에까지 도달한 대규모 고속시스템으로는 단연 Transrapid시스템을 꼽을 수 있다. 이에 Transrapid사와 미국, 일본등의 각 국에서 그간 세밀하게 조사하여 검토한 자료를 상세하게 소개하므로써 신교통시스템으로서의, 자기부상열차의 적합성과 개발의 타당성 및 당위성을 제시하여 이 분야에 관심있는 분들에게 참고는 물론 우리나라의 개발방향 설정에 유익한 자료가 되었으면 한다.

  • PDF

Implementation of permanent Magnetic Repulsion Type of Magnetic Levitation Table Using One Degree-of-freedom Active Control (1 자유도 능동제어에 의한 영구자석 반발형 자기부상 테이블의 구현)

  • Jo, Yeong-Geun;Choe, Gi-Bong;Tadahiko Shinshi;Akira Shimokohbe
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.125-132
    • /
    • 2002
  • This paper shows an experimental magnetic levitation table using one degree-of-freedom active control. The magnetic levitation table using repulsions of permanent magnets was theoretically presented already. Thus the objective of this paper is to prove stable levitation with only one degree-of-freedom active control experimentally. For the design of the system, at first, permanent magnets are selected. Secondly, the spring constants of the virtual spring are obtained by simulation. Thirdly, the moving magnets are arranged using a stable layout relation. Fourthly, a linear voice coil motor is designed. Finally, the magnetic levitation system is manufactured. The phenomenon of stable levitation in the manufactured table is proven by means of dynamic time and frequency responses. The differences between the theoretical natural frequencies and experimental ones are analyzed. Also, stable range in the control direction is shown experimentally.

YBCO 고온 초전도체의 자기 부상력 및 에너지 저장응용

  • 김찬중
    • Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.38-48
    • /
    • 1999
  • 용융공정으로 제조한 YBCO 고온 초전도체는 임계전류밀도가 높기 때문에 외부자장을 강력하게 반발한다. 영구자석과 YBCO 초전도체간의 부상력을 이용하면 무접촉으로 회전할 수 있는 베어링을 제작할 수 있다 고온 초전도체 무접촉 베어링은 고에너지 효율의 플라이휠 에너지 저장장치에 활용된다. 초전도 베어링은 전자석을 이용한 자기 베어링에 비해, 위치 제어 시스템 없이 중량물을 공중에 띄워 회전시킬 수 있는 장점이 있다. 플라이휠 에너지 저장장치는 무공해의 환경 친화적인 기술로, 용량과 규모, 에너지 입출력 양과 시간을 조절하기 쉽다. 또한, 장소설정에 제한이 없으므로 에너지를 필요로 하는 장소에 자유롭게 설치할 수 있고, 에너지밀도가 다른 저장시스템에 비해 상대적으로 높다. 현재 선진 각국에서는 에너지의 효율적 저장 및 활용을 위해 고온 초전도체 베어링을 이용한 플라이휠 에너지 저장장치를 국가적 중점 사업으로 개발 중이며 2000년 초에 실용화될 전망이다. 본 논문에서는 고온 초전도체의 자기 부상력, 플라이흴 에너지 저장장치의 개념설계 및 개발동향에 대해 요약하였다.

  • PDF

Development of the Small Scale Testbed for Running Dynamic Characteristics Analysis of the Capsule Train (캡슐트레인 주행 동특성 분석을 위한 축소 시험장치의 개발)

  • Lee, Jin-Ho;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.643-651
    • /
    • 2020
  • A capsule train runs inside a sub-vacuum tube and can reach very high speed due to the low air resistance. A capsule train uses a superconducting electrodynamic suspension (SC-EDS) method for levitation, which allows for a large levitation gap and does not require gap control. However, SC-EDS has inherent characteristics such as the large gap variation and a small damping effect in the levitation force, which can degrade the running stability and ride comfort. To overcome this, a stability improvement device should be designed and applied based on dynamic analysis. In this study, a 1/10 small-scale testbed was developed to replicate the dynamic characteristics of a capsule train and investigate the performance of stability improvement devices. The testbed is composed of a 6-degree-of-freedom Stewart platform for the realization of bogie motion, a secondary suspension with a running stabilization device, and a carbody. Based on the dynamic similarity law proposed by Jaschinski, the small-scale testbed was manufactured, and a bogie motion algorithm was applied with the consideration of guideway irregularity and levitation stiffness. The experimental results from the testbed were compared with simulation results to investigate the performance of the testbed.