• Title/Summary/Keyword: 반무한

Search Result 238, Processing Time 0.027 seconds

3-Dimensional Elastic-Plastic Contact Analysis Considering Subsurface Plastic Strain in a Half-Space (반무한체 표면아래의 소성변형을 고려한 3차원 탄소성 접촉해석)

  • Cho, Yong-Joo;Moon, Kil-Hwan;Lee, Sang-Don
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.90-95
    • /
    • 2008
  • An elastic-plastic contact analysis is developed using a semi-analytical method. The elastic contact is solved within a Hertz theorem. The reciprocal theorem with initial strains is then introduced, to express the surface geometry as a function of contact stress and plastic strains. The irreversible nature of plasticity leads to an incremental formulation of the elastic-plastic contact problem, and an algorithm to solve this problem is set up. Closed form expression, which give residual stresses and surface displacements from plastic strains, are obtained by integration of the reciprocal theorem. The distribution of contact stress, residual stress and plastic strain are obtained by the changed surface geometry.

Buckling Analysis of Two Elastic Layers Bonded to a Semi-Infinite Substrate Using Incremental Deformation Theory (증분 변형 이론을 이용한 반무한체에 접합된 두 탄성층의 좌굴 해석)

  • Jeong, Kyoung-Moon;Beom, Hyeon-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.369-374
    • /
    • 2000
  • The buckling of two elastic layers bonded to a semi-infinite substrate under a transverse compressive plane strain is investigated. Incremental deformation theory is employed to describe the buckling behavior of both two isotropic layers and the semi-infinite substrate. The problem is converted to an eigenvalue-eigenvector case, from which the critical buckling strain and the wavelength of the buckled shape are obtained. The results are presented on the effects of the layer geometries and material properties on the buckling behavior.

  • PDF

Buckling of an Orthotropic Layer Bonded to a Half-Space with an Interface Crack (계면균열을 갖는 반무한체에 접합된 직교이방성 층의 좌굴)

  • Jeong, Gyeong-Mun;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.95-103
    • /
    • 2001
  • The buckling of an orthotropic layer bonded to an orthotropic half-space with an interface crack subjected to compressive load under plane strain is analyzed. General solution to the stability equations describing the buckling behavior of both the layer and the half-space is expressed in terms of displacement functions. The displacement functions are represented by the solution of Cauchy-type singular integral equations, which are numerically solved. Numerical results of the critical buckling loads are presented fur various geometric parameters and material properties of both the layer and half-space.

  • PDF

Dynamic Stress Intensity Factors of the Half Infinite Crack in the Orthotropic Material Strip with a Large Anisotropic Ratio (이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 응력확대계수에 관한 연구)

  • Baek, Un-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1557-1564
    • /
    • 2000
  • When the half infinite crack in the orthotropic material strip with a large anisotropic ratio(E11>>E22) propagates with constant velocity, dynamic stress component $\sigma$y occurre d along the $\chi$ axis is derived by using the Fourier transformation and Wiener-Hopf technique, and the dynamic stress intensity factor is derived. The dynamic stress intensity factor depends on a crack velocity, mechanical properties and specimen hight. The normalized dynamic stress intensity factors approach the maximum values when normalized time(=Cs/a) is about 2. They have the constant values when the normalized time is greater than or equal to about 2, and decrease with increasing a/h(h: specimen hight, a: crack length) and the normalized crack propagation velocity( = c/Cs, Cs: shear wave velocity, c: crack propagation velocity).

Propagation Characteristics of a Surface Crack on a Semi-Infinite Body Due to Frictional Heating (마찰열에 의한 반무한체 표면균열의 전파특성)

  • Park, Jun-Ho;Park, Eun-Ho;Kim, Chae-Ho;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3126-3134
    • /
    • 1996
  • In this paper, to examine the propagation of inclined surface crack due to frictional heating, analytic model is considered as the semi-infinite elastic body subjected to the thermo-mechanical loading of an asperity moving with a high speed. Considering the moving of frictional heat source and convection on a semi-infinite surface having inclined crack, theoretical analysis was carried out to estimate the propagation characteristics of thermo-mechanical crack. Numerical results showed that stress intensity factor $K_\prod/P_0\sqrt{c}$ is increasing with increasing velocity and frictional coefficient, inclined degree, decreasing crack length and the maximum value of it is positioned at the trailing edge. So it is shown that the propagation probability of surface crack is high at the trailing edge of contact area as increasing velocity and frictional coefficient, inclined degree, as decreasing crack length.

Prediction of Wave Force on a Long Structure of Semi-infinite Breakwater Type Considering Diffraction (회절을 고려한 반무한방파제 형식의 장대구조물에 작용하는 파력 예측)

  • Jung, Jae-Sang;Lee, Changhoon;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.424-433
    • /
    • 2015
  • In this study, the wave force distribution acting on a semi-infinite and vertical-type long structure is investigated considering diffraction. An analytical solution of the wave force acting on long structures is also suggested in this study. The wave forces on long structures are evaluated for monochromatic, uni-directional random, and multi-directional random waves. Diffraction effects in front of the breakwater and on the lee side of the breakwater are considered. The wave force on a long structure becomes zero when the relative length of the breakwater (1/L) is zero. The diffraction effects are relatively strong when the relative length of the breakwater is less than 1.0, and the wave forces decrease greatly for long structure when the relative length of the breakwater is larger than 0.5. Therefore, it is necessary to consider diffraction effects when the relative length of the breakwater is less than 1.0, and the relative length of the breakwater must be at least 0.5 in order to obtain a reduction of wave force on long structures.

Bolzano and the Evolution of the Concept of Infinity (무한 개념의 진화 : Bolzano를 중심으로)

  • Cheong, Kye-Seop
    • Journal for History of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.31-52
    • /
    • 2008
  • The concept of infinity, as with other scientific concepts, has a history of evolution. In the present work we intend to discuss the subject matter with regard to Bolzano since he is considered to be the first to accept the idea of actual infinity not just from a metaphysical perspective but from a mathematical one. Like modem platonists, Bolzano defended the infinite set itself regardless of the construction process; this is based on the principal of comprehension and unicity of denotation regarding all concepts. In addition, instead of considering as paradoxical the fact that a one-to-one correspondence existed between an infinite set and its parts, he regarded it in a positive way as a special characteristic. While the Greek era recognized the existence of only one infinity, Balzano acknowledged the existence of various types of infinity and formulated a logical definition for it. The question of infinity is a touchstone of constructive method which holds an increasingly important role in mathematics. The present study stops with just a brief reference to the subject matter and we will leave further in-depth investigation for later.

  • PDF

Development of a Simplified Treatment Technique of Partial Wave Reflection and Transmission for Mild-Slope Wave Model (완경사 방정식에서의 간편화된 파의 부분 반사 및 투과 처리기법)

  • Chun Je-Ho;Ahn Kyung-Mo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.84-96
    • /
    • 2006
  • This paper presents a simplified numerical method that can be used to incorporate the partial reflection and transmission of water waves in the hyperbolic mild-slope equation. For given reflection and transmission coefficients, wave fields around a porous breakwater including reflection, transmission, and diffraction can be simulated accurately. For the verification of the proposed method, numerical experiments have been carried out and compared with analytic solutions given by Yu(1995) and McIver(1999). The proposed method is easy to implement and is computationally efficient. It is demonstrated that the method performs well with a sloping bottom bathymetry and varying incident wave angles.

블럭형 진동기초의 설계

  • 윤정방
    • Computational Structural Engineering
    • /
    • v.6 no.1
    • /
    • pp.11-16
    • /
    • 1993
  • 진동기초의 해석 및 설계에서의 주요사항은 진동하중자체의 특성을 산정하는 것과 기초구조의 수평, 수직, Rocking, Pitching 응답의 해석 및 수평-Rocking이 연계된 운동의 해석이다. 현재 사용되는 진동기초설계의 해석방법은 Reissner(1936)의 반무하지반영역 위에 놓인 원형강판에 대한 해석적 결과를 이용한 여러가지 변형된 방법이 사용되고 있다. 이러한 진동기초의 해석방법은 지반의 모형화하는 방법에 따라 탄성 반무한영역으로 지반을 모형화하는 경우 (Reissner(1936), Shekhter(1948), Sung(1953), Quinlan(1953), 등)와 감쇠-탄성스프링에 의해 지반을 모형화하는 경우 (Lysmer and Richart(1966), Barkan(1962), 등)로 나눌 수 있다. 최근의 실제 설계에는 선형스프링 이론을 바탕으로 하여, 감쇠효과와 진동에 참여하는 흙의 질량영향을 무시하는 Barakan(1962)의 방법이 많이 사용되고 있다.

  • PDF